Câu hỏi:

30/04/2022 225 Lưu

Cho khối chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,\) mặt bên \(\left( {SAB} \right)\) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích của khối chóp đã cho bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc (ảnh 1)

Gọi \(H\) là trung điểm của \(AB.\) Do tam giác \(SAB\) là tam giác đều nên: \(SH \bot AB.\)

Vì \(\left( {SAB} \right) \bot \left( {ABCD} \right)\) và \(\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\) nên: \(SH \bot \left( {ABCD} \right).\)

\(SH = \frac{{a\sqrt 3 }}{2}\) (đường cao tam giác đều \(SAB).\)

Thể tích của khối chóp \(S.ABCD\) là: \({V_{S.ABCD}} = \frac{1}{3}.SH.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 3 }}{2}.{a^2} = \frac{{{a^3}\sqrt 3 }}{6}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A.

Ta có \({\log _5}x \ge 2 \Leftrightarrow x \ge {5^2} \Leftrightarrow x \ge 25.\)

Tập nghiệm của bất phương trình trên là \(S = \left[ {25; + \infty } \right).\)

Câu 2

Lời giải

Đáp án A.

Hàm số đã cho xác định khi và chỉ khi \(x \ne 0.\)

Vậy tập xác định của hàm số là: \(D = \mathbb{R}\backslash \left\{ 0 \right\}.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP