Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu của \(f'\left( x \right)\) như sau:

Hàm số \(y = f\left( {1 - x} \right)\) đồng biến trên khoảng nào dưới đây?
Câu hỏi trong đề: [Năm 2022] Đề thi thử môn Toán THPT Quốc gia có đáp án (30 đề) !!
Quảng cáo
Trả lời:
Đáp án B.
Ta có \(y' = - f'\left( {1 - x} \right) \Leftrightarrow \left[ \begin{array}{l}1 - x = 0\\1 - x = 1\\1 - x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 0\\x = - 1\end{array} \right..\)
Ta có bảng xét dấu như sau:

Căn cứ vào bảng biến thiên ta có hàm số \(y = f\left( {1 - x} \right)\) đồng biến trên \(\left( { - 2; - 1} \right).\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A.
Ta có \({\log _5}x \ge 2 \Leftrightarrow x \ge {5^2} \Leftrightarrow x \ge 25.\)
Tập nghiệm của bất phương trình trên là \(S = \left[ {25; + \infty } \right).\)
Lời giải
Đáp án A.
Hàm số đã cho xác định khi và chỉ khi \(x \ne 0.\)
Vậy tập xác định của hàm số là: \(D = \mathbb{R}\backslash \left\{ 0 \right\}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.