Câu hỏi:

30/04/2022 547 Lưu

Tập nghiệm của bất phương trình \({4^x} - {3.2^{x + 2}} + 32 \le 0\) là 

A.\(\left( {4;8} \right).\)

B.\(\left( {2;3} \right).\)

C.\(\left[ {2;3} \right].\)

D. \(\left[ {4;8} \right].\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C.

Ta đặt \(t = {2^x};t >0.\) Thay vào bất phương trình đã cho ta thu được: \({t^2} - 12t + 32 \le 0 \Leftrightarrow 4 \le t \le 8.\)

Suy ra \(4 \le {2^x} \le 8 \Leftrightarrow 2 \le x \le 3.\) Tập nghiệm của bất phương trình đã cho là \(\left[ {2;3} \right].\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\(\left( {25; + \infty } \right).\)

B.\(\left( {0;25} \right].\)

C.\(\left( {25; + \infty } \right).\)

D. \(\left[ {32; + \infty } \right).\)

Lời giải

Đáp án A.

Ta có \({\log _5}x \ge 2 \Leftrightarrow x \ge {5^2} \Leftrightarrow x \ge 25.\)

Tập nghiệm của bất phương trình trên là \(S = \left[ {25; + \infty } \right).\)

Câu 2

A.\(\mathbb{R}\backslash \left\{ 0 \right\}.\)

B.\(\left( {0; + \infty } \right).\)

C.\(\left[ {0; + \infty } \right).\)

D.\(\mathbb{R}.\)

Lời giải

Đáp án A.

Hàm số đã cho xác định khi và chỉ khi \(x \ne 0.\)

Vậy tập xác định của hàm số là: \(D = \mathbb{R}\backslash \left\{ 0 \right\}.\)

Câu 3

A.\(x = 4.\)

B.\(x = 3.\)

C.\(x = 1.\)

D. \(x = 5.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(x = 6.\)

B.\(x = 5.\)

C.\(x = 8.\)

D.\(x = 9.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP