Câu hỏi:

30/04/2022 199

Gọi \(a\) là giá trị nhỏ nhất của \(f\left( n \right) = \frac{{\left( {{{\log }_5}2} \right)\left( {{{\log }_5}3} \right)\left( {{{\log }_5}4} \right)...\left( {{{\log }_5}n} \right)}}{{{3^n}}},\) với \(n \in \mathbb{N},n \ge 2.\) Có bao nhiêu số \(n\) để \(f\left( n \right) = a?\) 

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C.

Ta có \(\forall x \in \mathbb{N},n \ge 2\) ta có: \(f\left( n \right) >0.\)

Mặt khác: \(f\left( {n + 1} \right) = \frac{{\left( {{{\log }_5}2} \right)\left( {{{\log }_5}3} \right)\left( {{{\log }_5}4} \right)...\left( {{{\log }_5}n} \right)\left( {{{\log }_5}\left( {n + 1} \right)} \right)}}{{{3^{n + 1}}}} = f\left( n \right)\frac{{{{\log }_5}\left( {n + 1} \right)}}{3}.\)

\(f\left( {n - 1} \right) = \frac{{\left( {{{\log }_5}2} \right)\left( {{{\log }_5}3} \right)\left( {{{\log }_5}4} \right)...\left( {{{\log }_5}\left( {n - 1} \right)} \right)}}{{{3^{n - 1}}}} = f\left( n \right)\frac{3}{{{{\log }_5}n}}.\)

Vì \(a\) là giá trị nhỏ nhất nên: \(\left\{ \begin{array}{l}f\left( {n + 1} \right) \ge a\\f\left( {n - 1} \right) \ge a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}f\left( n \right)\frac{{{{\log }_5}\left( {n + 1} \right)}}{3} \ge a\\f\left( n \right)\frac{3}{{{{\log }_5}n}} \ge a\end{array} \right.\).

Để \(f\left( n \right) = a.\)

Suy ra: \(\left\{ \begin{array}{l}f\left( n \right)\frac{{{{\log }_5}\left( {n + 1} \right)}}{3} \ge f\left( n \right)\\f\left( n \right)\frac{3}{{{{\log }_5}n}} \ge f\left( n \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{{{\log }_5}\left( {n + 1} \right)}}{3} \ge 1\\\frac{3}{{{{\log }_5}n}} \ge 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\log _5}\left( {n + 1} \right) \ge 3\\3 \ge {\log _5}n\end{array} \right.\)

\( \Leftrightarrow {5^3} - 1 \le n \le {5^3}.\)

Vậy có 2 số \(n\) nguyên thỏa mãn.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tập nghiệm của bất phương trình \({\log _5}x \ge 2\) là 

Xem đáp án » 30/04/2022 13,200

Câu 2:

Tập xác định của hàm số \(y = {x^{ - 2}}\) là 

Xem đáp án » 30/04/2022 12,424

Câu 3:

Nghiệm của phương trình \({3^{x + 2}} = 27\) là 

Xem đáp án » 01/05/2022 9,689

Câu 4:

Nghiệm của phương trình \({\log _3}x = 2\) là

Xem đáp án » 01/05/2022 5,752

Câu 5:

Cho hai hàm số \(y = {2^x}\) và \(y = {\log _2}x\) lần lượt có đồ thị \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right).\) Gọi \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\) là hai điểm lần lượt thuộc \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) sao cho tam giác \(IAB\) vuông cân tại \(I,\) trong đó \(I\left( { - 1; - 1} \right).\) Giá trị của \(P = \frac{{{x_A} + {y_A}}}{{{x_B} + {y_B}}}\) bằng

Xem đáp án » 30/04/2022 5,448

Câu 6:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Cho hàm số y=f(x) có bảng biến thiên như sau: Số nghiệm thực của phương trình 3f(x)+1=0 là (ảnh 1)

Số nghiệm thực của phương trình \(3f\left( x \right) + 1 = 0\) là

Xem đáp án » 30/04/2022 4,312

Câu 7:

Cho hàm số \(y = f\left( x \right)\) có \(f'\left( x \right) = {x^2} - 4x\) với mọi \(x\) là số thực. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem đáp án » 30/04/2022 3,489
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua