Câu hỏi:

30/04/2022 4,191 Lưu

Cho hàm số \(y = f\left( x \right)\) có \(f'\left( x \right) = {x^2} - 4x\) với mọi \(x\) là số thực. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

A.\(\left( {2; + \infty } \right).\)

B. \(\left( { - 1;0} \right).\)

C.\(\left( {0;4} \right).\)

D.\(\left( { - 2;1} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B.

Ta có: \({x^2} - 4x \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 4\\x \le 0\end{array} \right..\)

Vậy hàm số đồng biến trên khoảng \(\left( { - 1;0} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\(\left( {25; + \infty } \right).\)

B.\(\left( {0;25} \right].\)

C.\(\left( {25; + \infty } \right).\)

D. \(\left[ {32; + \infty } \right).\)

Lời giải

Đáp án A.

Ta có \({\log _5}x \ge 2 \Leftrightarrow x \ge {5^2} \Leftrightarrow x \ge 25.\)

Tập nghiệm của bất phương trình trên là \(S = \left[ {25; + \infty } \right).\)

Câu 2

A.\(\mathbb{R}\backslash \left\{ 0 \right\}.\)

B.\(\left( {0; + \infty } \right).\)

C.\(\left[ {0; + \infty } \right).\)

D.\(\mathbb{R}.\)

Lời giải

Đáp án A.

Hàm số đã cho xác định khi và chỉ khi \(x \ne 0.\)

Vậy tập xác định của hàm số là: \(D = \mathbb{R}\backslash \left\{ 0 \right\}.\)

Câu 3

A.\(x = 4.\)

B.\(x = 3.\)

C.\(x = 1.\)

D. \(x = 5.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(x = 6.\)

B.\(x = 5.\)

C.\(x = 8.\)

D.\(x = 9.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP