Câu hỏi:

30/04/2022 4,010 Lưu

Cho hàm số \(y = f\left( x \right)\) có \(f'\left( x \right) = {x^2} - 4x\) với mọi \(x\) là số thực. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Ta có: \({x^2} - 4x \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 4\\x \le 0\end{array} \right..\)

Vậy hàm số đồng biến trên khoảng \(\left( { - 1;0} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A.

Ta có \({\log _5}x \ge 2 \Leftrightarrow x \ge {5^2} \Leftrightarrow x \ge 25.\)

Tập nghiệm của bất phương trình trên là \(S = \left[ {25; + \infty } \right).\)

Câu 2

Lời giải

Đáp án A.

Hàm số đã cho xác định khi và chỉ khi \(x \ne 0.\)

Vậy tập xác định của hàm số là: \(D = \mathbb{R}\backslash \left\{ 0 \right\}.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP