Câu hỏi:
30/04/2022 549Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của tham số \(m\) để trên đoạn \(\left[ { - 1;2} \right]\) phương trình \(3f\left( {{x^2} - 2x - 1} \right) = m\) có đúng hai nghiệm thực phân biệt?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A.
Xét hàm số \(y = g\left( x \right) = 3f\left( {{x^2} - 2x - 1} \right)\) trên đoạn \(\left[ { - 1;2} \right].\)
Ta có \(y' = g'\left( x \right) = 3\left( {2x - 2} \right).f'\left( {{x^2} - 2x - 1} \right).\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}2x - 2 = 0\\{x^2} - 2x - 1 = - 2\\{x^2} - 2x - 1 = - 1\\{x^2} - 2x - 1 = 1\\{x^2} - 2x - 1 = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 0\\x = 2\\x = 1 + \sqrt 3 \notin \left[ { - 1;2} \right]\\x = 1 - \sqrt 3 \\x = - 1\\x = 3 \notin \left[ { - 1;2} \right]\end{array} \right.\)
Ta có \(x = - 1 \Rightarrow g\left( { - 1} \right) = 3.f\left( 2 \right) = 12\)
\(x = 1 - \sqrt 3 \Rightarrow g\left( {1 - \sqrt 3 } \right) = 3.f\left( 1 \right) = 15\)
\(x = 0 \Rightarrow g\left( 0 \right) = 3.f\left( { - 1} \right) = - 15\)
\(x = 1 \Rightarrow g\left( 1 \right) = 3.f\left( { - 2} \right) = - 12\)
\(x = 2 \Rightarrow g\left( 2 \right) = 3.f\left( { - 1} \right) = - 15\)
Ta có bảng biến thiên:
Trên đoạn \(\left[ { - 1;2} \right]\) số nghiệm của phương trình \(3f\left( {{x^2} - 2x - 1} \right) = m\) chính là số giao điểm của đồ thị hàm số \(y = 3f\left( {{x^2} - 2x - 1} \right)\) với đường thẳng \(y = m.\) Vậy để phương trình có đúng hai nghiệm thực phân biệt trên đoạn \(\left[ { - 1;2} \right]\) thì \(\left[ \begin{array}{l}m = - 12\\12 \le m < 15\end{array} \right..\) Vậy các giá trị nguyên của \(m\) là: \( - 12,12,13,14.\) Có bốn giá trị nguyên của \(m\) nên ta chọn đáp án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Số nghiệm thực của phương trình \(3f\left( x \right) + 1 = 0\) là
Câu 5:
Cho hàm số \(y = f\left( x \right)\) có \(f'\left( x \right) = {x^2} - 4x\) với mọi \(x\) là số thực. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 7:
Cho hai hàm số \(y = {2^x}\) và \(y = {\log _2}x\) lần lượt có đồ thị \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right).\) Gọi \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\) là hai điểm lần lượt thuộc \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) sao cho tam giác \(IAB\) vuông cân tại \(I,\) trong đó \(I\left( { - 1; - 1} \right).\) Giá trị của \(P = \frac{{{x_A} + {y_A}}}{{{x_B} + {y_B}}}\) bằng
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 1)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Bộ đề thi thử Đại học môn Toán mới nhất cực hay có lời giải (Đề 1)
về câu hỏi!