Câu hỏi:

02/05/2022 3,792

Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá bán mỗi quả là 50.000 đồng. Với giá này thì cửa hàng chỉ bán được khoảng 40 quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 5000 đồng thì số bưởi bán được tăng thêm 50 quả. Xác định giá bán để cửa hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả là 30.000 đồng. 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D.

Gọi \(x\) đồng \(\left( {30 < x < 50} \right)\) là giá bán bưởi mới để cửa hàng thu được lợi nhuận lớn nhất.

Suy ra giá bán ra đã giảm là \(50 - x\) đồng.

Số lượng bưởi bán ra đã tăng thêm là \(\frac{{50\left( {50 - x} \right)}}{5} = 500 - 10x.\)

Tổng số bưởi bán được là \(40 + 500 - 10x = 540 - 10x.\)

Doanh thu của cửa hàng là \(\left( {540 - 10x} \right)x.\)

Số tiền vốn ban đầu để mua bưởi là \(\left( {540 - 10x} \right)30.\)

Vậy lợi nhuận của cửa hàng là \(\left( {540 - 10x} \right)x - \left( {540 - 10x} \right)30 = - 10{x^2} + 840x - 16200.\)

Ta có: \(f\left( x \right) = - 10{x^2} + 840x - 16200 = - 10{\left( {x - 42} \right)^2} + 1440 \le 1440.\)

Suy ra \(\max f\left( x \right) = 1440\) khi \(x = 42.\)

Vậy giá bán mỗi quả là 42.000 đồng thì cửa hàng thu được lợi nhuận lớn nhất

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Phương trình \(1 - \cos 2x = 0\) có tập nghiệm là

Lời giải

Đáp án D.

Ta có \(1 - \cos 2x = 0 \Leftrightarrow \cos 2x = 1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi \left( {k \in \mathbb{Z}} \right).\)

Vậy tập nghiệm của phương trình là \(\left\{ {k\pi ,k \in \mathbb{Z}} \right\}.\)

Lời giải

Đáp án A.

Ta có \(y' = - \frac{1}{{{{\left( {x + 1} \right)}^2}}} < 0\) với mọi \(x \in \left[ {0;4} \right].\) Suy ra, hàm số luôn nghịch biến trên \(\left[ {0;4} \right].\)

Vậy \({y_{\min }} = y\left( 4 \right) = \frac{{11}}{5}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = mx - \frac{1}{{{x^3}}} + 2{x^3}\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Biết rằng phương trình \({\log _3}\left( {{x^2} - 2020x} \right) = 2021\) có 2 nghiệm \({x_1},{x_2}.\) Tính tổng \({x_1} + {x_2}.\) 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay