Câu hỏi:

08/05/2022 5,513 Lưu

Cho hình nón có chiều cao bằng 4 và bán kính đáy bằng 3. Cắt hình nón đã cho bởi mặt phẳng đi qua đỉnh và cách tâm của đáy một khoảng bằng 2, ta được thiết diện có diện tích bằng

A. 20.

B. \(\frac{{8\sqrt {11} }}{3}.\)

C.\(\frac{{16\sqrt {11} }}{3}.\)

D. \(10.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp ánB.

Cho hình nón có chiều cao bằng 4 và bán kính đáy bằng 3. Cắt hình nón đã cho bởi mặt phẳng đi qua đỉnh và cách tâm  (ảnh 1)

Gọi \(S\) là đỉnh, \(I\) là tâm đường tròn đáy của hình nón đã cho.

Mặt phẳng đi qua đỉnh của hình nón và cách tâm của đáy một khoảng bằng 2 cắt đường tròn đáy theo dây cung \(AB\).

Gọi \(M\) là trung điểm của \(AB.\) Qua \(I\) kẻ \(IH \bot SM\left( {H \in SM} \right)\).

Ta có:

\(IA = IB = 3\) nên tam giác \(IAB\) cân tại \(I\) hay \(IM \bot AB\left( 1 \right)\)

\(SI \bot \left( {IAB} \right) \Rightarrow SI \bot AB\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(AB \bot \left( {SIM} \right) \Rightarrow AB \bot IH\) mà \(IH \bot SM\) nên \(IH \bot \left( {SAB} \right)\)

Khoảng cách từ tâm đến \(mp\left( {SAB} \right)\) bằng 2 nên \(IH = 2\)

Tam giác \(SIM\) vuông tại \(I\), có đường cao \(IH\) nên:

\(\frac{1}{{I{H^2}}} = \frac{1}{{S{I^2}}} + \frac{1}{{I{M^2}}} \Leftrightarrow \frac{1}{{{2^2}}} = \frac{1}{{{4^2}}} + \frac{1}{{I{M^2}}} \Rightarrow IM = \frac{{4\sqrt 3 }}{3}\)

\(S{M^2} = S{I^2} + I{M^2} = {4^2} + {\left( {\frac{{4\sqrt 3 }}{3}} \right)^2} \Rightarrow SM = \frac{{8\sqrt 3 }}{3}\)

Tam giác \(IAM\) vuông tại \(M\) nên \(AM = \sqrt {I{A^2} - I{M^2}} = \frac{{\sqrt {33} }}{3} \Rightarrow AB = \frac{{2\sqrt {33} }}{3}\).

Tam giác \(SAB\) có \(SM \bot AB\) nên diện tích tam giác \(SAB\) là:

\({S_{\Delta SAB}} = \frac{1}{2}SM.AB = \frac{1}{2}.\frac{{8\sqrt 3 }}{3}.\frac{{2\sqrt {33} }}{3} = \frac{{8\sqrt {11} }}{3}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp ánC.

Mỗi tập hợp con gồm 2 phần tử của \(A\) tập hợp là một tổ hợp chập 2 của 6 phần tử. Do đó số tập hợp con gồm hai phần tử của tập hợp \(A\) là \(C_6^2.\)

Lời giải

Đáp án A.

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a tâm O. Gọi M,N lần lượt là trung điểm của SA và BC. (ảnh 1)Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a tâm O. Gọi M,N lần lượt là trung điểm của SA và BC. (ảnh 2)

Goi \(O\) là tâm hình vuông \(ABCD\).

Vì \(SABCD\) là chóp tứ giác đều nên \(SO\) vuông góc với \(\left( {ABCD} \right)\)

Gọi \(E\) là hình chiếu \(M\) trên \(\left( {ABCD} \right)\)

\( \Rightarrow E\) là trung điểm của \(AO\)

\( \Rightarrow \left( {\widehat {MN;\left( {ABCD} \right)}} \right) = \left( {\widehat {MN;EN}} \right) = \widehat {MNE} = {60^0}\)

Do: \(N{E^2} = C{N^2} + C{E^2} - 2.CN.CE.\cos \widehat {NCE}\)

\( \Rightarrow NE = \frac{{a\sqrt {10} }}{4}\)

\( \Rightarrow MN = 2.ME = \frac{{a\sqrt {10} }}{2}\)

Gọi \(I\) là giao điểm của \(EN\) và \(BO\).

Từ \(I\) kẻ đường thẳng song song với \(ME,\) cắt \(MH\) tại \(H\)

\( \Rightarrow H\) là giao điểm của \(MN\) và \(\left( {SBD} \right)\).

Hình chiếu của \(N\) lên \(\left( {SBD} \right)\) là góc \(NHK\).

Xét tam giác vuông \(NHK\) có:

\(NH = \frac{{MN}}{2} = \frac{{a\sqrt {10} }}{4}\)

\(NK = \frac{{CO}}{2} = \frac{{a\sqrt 2 }}{4}\)

\( \Rightarrow \sin \widehat {NHK} = \frac{{\sqrt 5 }}{5}\)

\( \Rightarrow \left( {\widehat {MN;\left( {SBD} \right)}} \right) = \arcsin \frac{{\sqrt 5 }}{5}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP