Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\) tâm \(O.\) Gọi \(M,N\) lần lượt là trung điểm của \(SA\) và \(BC.\) Góc giữa đường thẳng \(MN\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \({60^0}.\) Tính góc giữa đường thẳng \(MN\) và mặt phẳng \(\left( {SBD} \right)\)?
Câu hỏi trong đề: [Năm 2022] Đề thi thử môn Toán THPT Quốc gia có đáp án (30 đề) !!
Quảng cáo
Trả lời:
Đáp án A.
Goi \(O\) là tâm hình vuông \(ABCD\).
Vì \(SABCD\) là chóp tứ giác đều nên \(SO\) vuông góc với \(\left( {ABCD} \right)\)
Gọi \(E\) là hình chiếu \(M\) trên \(\left( {ABCD} \right)\)
\( \Rightarrow E\) là trung điểm của \(AO\)
\( \Rightarrow \left( {\widehat {MN;\left( {ABCD} \right)}} \right) = \left( {\widehat {MN;EN}} \right) = \widehat {MNE} = {60^0}\)
Do: \(N{E^2} = C{N^2} + C{E^2} - 2.CN.CE.\cos \widehat {NCE}\)
\( \Rightarrow NE = \frac{{a\sqrt {10} }}{4}\)
\( \Rightarrow MN = 2.ME = \frac{{a\sqrt {10} }}{2}\)
Gọi \(I\) là giao điểm của \(EN\) và \(BO\).
Từ \(I\) kẻ đường thẳng song song với \(ME,\) cắt \(MH\) tại \(H\)
\( \Rightarrow H\) là giao điểm của \(MN\) và \(\left( {SBD} \right)\).
Hình chiếu của \(N\) lên \(\left( {SBD} \right)\) là góc \(NHK\).
Xét tam giác vuông \(NHK\) có:
\(NH = \frac{{MN}}{2} = \frac{{a\sqrt {10} }}{4}\)
\(NK = \frac{{CO}}{2} = \frac{{a\sqrt 2 }}{4}\)
\( \Rightarrow \sin \widehat {NHK} = \frac{{\sqrt 5 }}{5}\)
\( \Rightarrow \left( {\widehat {MN;\left( {SBD} \right)}} \right) = \arcsin \frac{{\sqrt 5 }}{5}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp ánC.
Mỗi tập hợp con gồm 2 phần tử của \(A\) tập hợp là một tổ hợp chập 2 của 6 phần tử. Do đó số tập hợp con gồm hai phần tử của tập hợp \(A\) là \(C_6^2.\)
Lời giải
Đáp án B.

Vì \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAD} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {SAD} \right) = SA\end{array} \right. \Rightarrow SA \bot \left( {ABCD} \right)\)
Ta có: \(AB = \sqrt {B{D^2} - A{D^2}} = \sqrt {{{\left( {a\sqrt 5 } \right)}^2} - {{\left( {2a} \right)}^2}} = a\)
\(SA = AB\tan {30^0} = \frac{{a\sqrt 3 }}{3}\)
\({S_{ABCD}} = \frac{{\left( {AD + BC} \right).AB}}{2} = \frac{{\left( {2a + a} \right).a}}{2} = \frac{{3{a^2}}}{2}\)
Thể tích khối chóp \(S.ABCD\) là:
\(V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 3 }}{3}.\frac{{3{a^2}}}{2} = \frac{{{a^3}\sqrt 3 }}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.