Câu hỏi:

04/05/2022 333 Lưu

Nguyên nhân nào trực tiếp dẫn đến sự thay đổi cơ bản trong thị trường lao động của con người trong tương lai?

A. Thuật toán hóa các công việc phụ thuộc vào dữ liệu hơn là sản xuất.

B. Sử dụng các trí tuệ nhân tạo tách rời.

C. Sử dụng robot thay thế con người.

D. Người lao động học thông qua ‘con mắt của thuật toán’ và trở nên phụ thuộc vào các hướng dẫn của nó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Phương pháp giải:

Căn cứ bài đọc hiểu, phân tích.

Giải chi tiết:

Nguyên nhân trực tiếp dẫn đến sự thay đổi cơ bản trong thị trường lao động của con người trong tương lai là: Thuật toán hóa các công việc phụ thuộc vào dữ liệu hơn là sản xuất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 741                         
B. 2341                         
C. 4                           
D. 7

Lời giải

Chọn D

Phương pháp giải:

Gọi điểm C thỏa mãn MA = 2MC

GTNN của MA + 2MB là BC

Tìm giao của BC với mặt cầu, chính là điểm M cần tìm

Giải chi tiết:

Trong không gian Õyz  cho mặt cầu (S): (x-1)^2+y^2+(z-2)^2=10  và hai điểm A(1;2;-4) ;B(1;2;14)  . Điểm M(a.b.c)  là điểm nằm trên (ảnh 1)

Mặt cầu (S) có tâm I(1;0;2) và bán kính R=10. Có

IA=(0;2;6);IA=22+62=210=2R

Gọi C là điểm thỏa mãn IC=14IA=(0;12;32)C(1;12;12) 

IM2=IC. IA ΔIMC~ΔIAM (c. g.c)

MAMC=IAIM=2MA=2MCMA+2MB=2(MB+MC)BC

Đẳng thức xảy ra khi M trùng M ' là giao của đoạn BC với (S)

M’ thuộc đoạn BC CM'=kCB=0;32k;272k(k>0) 

M'1;12+32k;12+272k. Ta có

M'(S)IM'=100+12+32k2+272k322=10
k=13M'(1;1;5).

Vậy a+b+c=7.

Lời giải

a) Phương pháp giải:

Hàm số đồng biến khi đạo hàm không âm.

Giải bất phương trình y’ ≥ 0 rồi cô lập m, lập bảng biến thiên trên khoảng cần xét.

Giải chi tiết:

Hàm số đã cho đồng biến trên nửa khoảng đã cho khi và chỉ khi

y'=mx22(m1)x+3(m2)0  x[2;+) 

m(x22x+3)62x 

m62xx22x+3(dox22x+3=(x1)2+2>0,x) 

Xét f(x)=62xx22x+3 trên [2;+∞) có f'x=2x212x+6x22x+32=0x=3±6 .

Ta có BBT

1. Tìm tất cả các giá trị của  m để hàm số y=1/3mx^3-(m-1)*x^2+3(m-2)*x+2022  đồng biến trên [2, dương vô cùng). (ảnh 1)

Căn cứ BBT, ta có các giá trị m cần tìm là m23 

Vậy m23.

b) Phương pháp giải:

Tìm số hạng tổng quát của dãy u1u2...un.

Từ đó tìm ra lim(u1u2...un).

Giải chi tiết:

Ta có

un=n2+2nn+12=nn+2n+12 

u1=1.322;u2=2.432;...;un=nn+2n+12 

u1u2...un=1.2.3.4...nn+222.32...n+12=n+22n+1 

limu1u2...un=lim1+2n2+2n=12 

Câu 3

A. 3                           
B. 4                            
C. 5                           
D. 6  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 110                         
B. 35                           
C. 15                          
D. 310

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. πa332                   
B. 4πa381                     
C. πa323                  
D. 8πa327

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP