Câu hỏi:

05/05/2022 720

Cho hình chóp S.ABC có thể tích bằng a3. Mặt (SBC) vuông góc với đáy. Các cạnh AB=AC=SA=SB=2a. Cạnh SC bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Phương pháp giải:

Gọi H là trung điểm BC, chứng minh H là tâm đường tròn ngoại tiếp tam giác vuông SBC.

Đặt SC = x và giải phương trình tìm x.

Giải chi tiết:

Cho hình chóp S.ABC có thể tích bằng a3. Mặt (SBC) vuông góc với đáy. Các cạnh AB=AC=SA=SB=2a  . Cạnh  SC bằng:  (ảnh 1)

Gọi H là trung điểm BC.AB=AC nên AHBC. Mà (SBC)(ABC) nên AH(SBC)

AB=AC=AS nên H là tâm đường tròn ngoại tiếp tam giác SBC. Suy ra tam giác SBC vuông tại S

Đặt SC =x>0, ta cóBC=SB2+SC2=4a2+x2BH=BC2=124a2+x2=a2+x24AH=AB2BH2=4a2a2+x24=3a2x24

Từ giả thiết suy ra

a3=VS.ABC=13AH.SSBC=163a2x24.2a.x6a2=12a2x2.xx412a2x2+36a4=0x26a22=0x2=6a2x=a6

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn D

Phương pháp giải:

Gọi điểm C thỏa mãn MA = 2MC

GTNN của MA + 2MB là BC

Tìm giao của BC với mặt cầu, chính là điểm M cần tìm

Giải chi tiết:

Trong không gian Õyz  cho mặt cầu (S): (x-1)^2+y^2+(z-2)^2=10  và hai điểm A(1;2;-4) ;B(1;2;14)  . Điểm M(a.b.c)  là điểm nằm trên (ảnh 1)

Mặt cầu (S) có tâm I(1;0;2) và bán kính R=10. Có

IA=(0;2;6);IA=22+62=210=2R

Gọi C là điểm thỏa mãn IC=14IA=(0;12;32)C(1;12;12) 

IM2=IC. IA ΔIMC~ΔIAM (c. g.c)

MAMC=IAIM=2MA=2MCMA+2MB=2(MB+MC)BC

Đẳng thức xảy ra khi M trùng M ' là giao của đoạn BC với (S)

M’ thuộc đoạn BC CM'=kCB=0;32k;272k(k>0) 

M'1;12+32k;12+272k. Ta có

M'(S)IM'=100+12+32k2+272k322=10
k=13M'(1;1;5).

Vậy a+b+c=7.

Lời giải

a) Phương pháp giải:

Hàm số đồng biến khi đạo hàm không âm.

Giải bất phương trình y’ ≥ 0 rồi cô lập m, lập bảng biến thiên trên khoảng cần xét.

Giải chi tiết:

Hàm số đã cho đồng biến trên nửa khoảng đã cho khi và chỉ khi

y'=mx22(m1)x+3(m2)0  x[2;+) 

m(x22x+3)62x 

m62xx22x+3(dox22x+3=(x1)2+2>0,x) 

Xét f(x)=62xx22x+3 trên [2;+∞) có f'x=2x212x+6x22x+32=0x=3±6 .

Ta có BBT

1. Tìm tất cả các giá trị của  m để hàm số y=1/3mx^3-(m-1)*x^2+3(m-2)*x+2022  đồng biến trên [2, dương vô cùng). (ảnh 1)

Căn cứ BBT, ta có các giá trị m cần tìm là m23 

Vậy m23.

b) Phương pháp giải:

Tìm số hạng tổng quát của dãy u1u2...un.

Từ đó tìm ra lim(u1u2...un).

Giải chi tiết:

Ta có

un=n2+2nn+12=nn+2n+12 

u1=1.322;u2=2.432;...;un=nn+2n+12 

u1u2...un=1.2.3.4...nn+222.32...n+12=n+22n+1 

limu1u2...un=lim1+2n2+2n=12 

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP