Câu hỏi:

07/05/2022 232 Lưu

Cho hình cầu có đường kính bằng 2a3. Mặt phẳng (P) cắt hình cầu theo thiết diện là hình tròn có bán kính bằng a2. Tính khoảng cách từ tâm hình cầu đến mặt phẳng (P).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

Cho hình cầu có đường kính bằng 2a căn bậc hai của 3. Mặt phẳng (P) cắt hình cầu theo (ảnh 1)

Áp dụng định lí Pytago: R2=r2+d2 với R là bán kính hình cầu, r là bán kính hình tròn, d=dI;P với I là tâm mặt cầu.

Cách giải:

Gọi d là khoảng cách từ tâm hình cầu đến mặt phẳng (P)

R là bán kính hình cầu R=a3.

r là bán kính hình tròn r=a2.

Vậy d=R2r2=3a22a2=a.

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp:

Khai triển nhị thức Niu-tơn: a+bn=k=0nCnkankbk

Cách giải:

Ta có: x3+xy15=k=015C15kx315kxyk=k=015C15kx452kyk

Số hạng chứa x25y10 ứng với 452k=25k=10k=10tm.

Vậy hệ số của x25y10 trong khai triển x3+xy15 là C1510=3003.

Chọn B.

Câu 2

Lời giải

Phương pháp:

Sử dụng công thức tính nguyên hàm: xndx=xn+1n+1+Cn1,sinxdx=cosx+C.

Cách giải:

fxdx=3xsinxdx=3x22+cosx+C.

 

Chọn A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP