Câu hỏi:

08/05/2022 195

Cho hàm số y = f(x) có đạo hàm trên  thỏa mãn f(0) = 3 fx+f2x=x22x+2,x. Tính I=02x.f'xdx.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

- Sử dụng phương pháp tích phân từng phần, đặt u=xdv=f'xdx.

- Sử dụng giả thiết f(0) = 3 fx+f2x=x22x+2 tính f(2)

- Từ fx+f2x=x22x+2 lấy tích phân từ 0 đến 2 hai vế, sau đó tính 02f2xdx bằng phương pháp đưa biến vào vi phân.

Cách giải:

Đặt u=xdv=f'xdxdu=dxv=fx.

I=02x.f'xdx=xfx2002fxdx

     =2f202fxdx

Theo bài ra ta có fx+f2x=x22x+2. Thay x=0f0+f2=2f2=2f0=1.

Lấy tích phân từ 0 đến 2 hai vế ta có 02fxdx+02f2xdx=02x22x+2dx=83.

Mà 02f2xdx=02f2xd2x=20fxdx=02fxdx

202fxdx=8302fxdx=43.

Vậy I=2f202fxdx=2.143=103.

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Hệ số của x25y10 trong khai triển x3+xy15 là:

Lời giải

Phương pháp:

Khai triển nhị thức Niu-tơn: a+bn=k=0nCnkankbk

Cách giải:

Ta có: x3+xy15=k=015C15kx315kxyk=k=015C15kx452kyk

Số hạng chứa x25y10 ứng với 452k=25k=10k=10tm.

Vậy hệ số của x25y10 trong khai triển x3+xy15 là C1510=3003.

Chọn B.

Câu 2

Họ tất cả các nguyên hàm của hàm số f(x) = 3x - sin x là 

Lời giải

Phương pháp:

Sử dụng công thức tính nguyên hàm: xndx=xn+1n+1+Cn1,sinxdx=cosx+C.

Cách giải:

fxdx=3xsinxdx=3x22+cosx+C.

 

Chọn A.

Câu 3

Cho tập hợp A=1;2;3;4;5;6;7;8. Từ tập hợp A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao cho các số này lẻ và không chia hết cho 5?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tích phân I=1e3lnx+1xdx. Nếu đặt t = lnx thì: 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay