Câu hỏi:

09/05/2022 351

Biết đồ thị hàm số y=ax3+bx2+cx+d cắt trục hoành tại ba điểm phân biệt với hoành độ dương x1,x2,x3 đồng thời

y''(1) = 0. Giá trị lớn nhất của biểu thức P=x3+x2x3+x1x2x33 là: 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì đồ thị hàm số y=ax3+bx2+cx+d cắt trục hoành tại ba điểm phân biệt với hoành độ dương x1,x2,x3 nên phương trình ax3+bx2+cx+d=0 có 3 nghiệm dương phân biệt x1,x2,x3.

Áp dụng định lí Vi-ét ta có: x1+x2+x3=bax1x2+x2x3+x3x1=cax1x2x3=da.

Ta có: y'=3ax2+2bx+c,y"=6ax+2b.

Vì y"1=06a+2b=0b=3ax1+x2+x3=ba=3.

Ta có:

P=x3+x2x3+x1x2x33

P=x3+124x2x3+1416x1.4x2.x33

Px3+12.4x2+x32+14.16x1+4x2+x33

Px3+4x2+x34+16x1+4x2+x312

P12x3+12x2+3x3+16x1+4x2+x312

P16x1+16x2+16x312=43x1+x2+x3

P43.3=4

Vậy Pmin=4.

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Hệ số của x25y10 trong khai triển x3+xy15 là:

Lời giải

Phương pháp:

Khai triển nhị thức Niu-tơn: a+bn=k=0nCnkankbk

Cách giải:

Ta có: x3+xy15=k=015C15kx315kxyk=k=015C15kx452kyk

Số hạng chứa x25y10 ứng với 452k=25k=10k=10tm.

Vậy hệ số của x25y10 trong khai triển x3+xy15 là C1510=3003.

Chọn B.

Câu 2

Họ tất cả các nguyên hàm của hàm số f(x) = 3x - sin x là 

Lời giải

Phương pháp:

Sử dụng công thức tính nguyên hàm: xndx=xn+1n+1+Cn1,sinxdx=cosx+C.

Cách giải:

fxdx=3xsinxdx=3x22+cosx+C.

 

Chọn A.

Câu 3

Cho tập hợp A=1;2;3;4;5;6;7;8. Từ tập hợp A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao cho các số này lẻ và không chia hết cho 5?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tích phân I=1e3lnx+1xdx. Nếu đặt t = lnx thì: 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay