Câu hỏi:

09/05/2022 400 Lưu

Cho mặt cầu (S) có bán kính R. Hình nón (N) thay đổi có đỉnh và đường kính đáy nằm trên mặt cầu (S). Thể tích lớn nhất của khối nón (N) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

- Gọi h là chiều cao của hình nón, r là bán kính đường tròn đáy của hình nón. Sử dụng định lí Pytago biểu diễn r theo h, R.

- Thể tích khối nón có chiều cao h bán kính đáy r là V=13πr2h.

- Sử dụng phương pháp hàm số để tìm GTLN của thể tích.

Cách giải:

Cho mặt cầu (S) có bán kính R. Hình nón (N) thay đổi có đỉnh và đường kính (ảnh 1)

Gọi h là chiều cao của hình nón. Để thể tích khối nón là lớn nhất thì hiển nhiên h > R.

Gọi r là bán kính đường tròn đáy của hình nón.

Ta có IH=SHSI=hR.

Áp dụng định lí Pytago ta có r=R2hR2=2hRh2.

 Thể tích khối nón là V=13πr2h=13π2hRh2.h=π32Rh2h3.

Xét hàm số fh=h3+2Rh2 với h > R ta có f'h=3h2+4Rh=0h=0ktmh=4R3tm.

Vmax=π3.f4R3=π3.2R.16R2964R327=32πR381.

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp:

Khai triển nhị thức Niu-tơn: a+bn=k=0nCnkankbk

Cách giải:

Ta có: x3+xy15=k=015C15kx315kxyk=k=015C15kx452kyk

Số hạng chứa x25y10 ứng với 452k=25k=10k=10tm.

Vậy hệ số của x25y10 trong khai triển x3+xy15 là C1510=3003.

Chọn B.

Câu 2

Lời giải

Phương pháp:

Sử dụng công thức tính nguyên hàm: xndx=xn+1n+1+Cn1,sinxdx=cosx+C.

Cách giải:

fxdx=3xsinxdx=3x22+cosx+C.

 

Chọn A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP