Câu hỏi:

09/05/2022 398

Cho n là số tự nhiên có bốn chữ số bất kì. Gọi S là tập hợp tất cả các số thực a thỏa mãn 3α=n. Chọn ngẫu nhiên một phần tử của S. Xác suất để chọn được một số tự nhiên bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

- Tìm số các số tự nhiên có 4 chữ số, từ đó suy ra số phần tử của tập hợp S và số phần tử của không gian mẫu.

- Gọi A là biến cố: “chọn được một số tự nhiên”.

- Từ giả thiết 3α=n tìm n cho n1000;9999, từ đó tìm α thỏa mãn.

- Tính xác suất của biến cố.

Cách giải:

Vì n là số tự nhiên có bốn chữ số bất kì nên 1000n9999 và có 99991000+1=9000 số tự nhiên có 4 chữ số.

Theo bài ra ta có 3α=nα=log3n.

Vì có 9000 số tự nhiên có 4 chữ số nên tập hợp S có 9000 phần tử  Số phần tử của không gian mẫu là

nΩ=9000.

Gọi A là biến cố: “chọn được một số tự nhiên”.

Ta có

1000n9999log31000log3nlog39999

6,29log3n8,386,29α8,38

Mà αα7;8nA=2.

Vậy xác suất của biến cố A PA=nAnΩ=29000=14500.

Chọn A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hệ số của x25y10 trong khai triển x3+xy15 là:

Xem đáp án » 07/05/2022 20,181

Câu 2:

Họ tất cả các nguyên hàm của hàm số f(x) = 3x - sin x là 

Xem đáp án » 08/05/2022 8,124

Câu 3:

Cho tập hợp A=1;2;3;4;5;6;7;8. Từ tập hợp A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao cho các số này lẻ và không chia hết cho 5?

Xem đáp án » 07/05/2022 6,701

Câu 4:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa hai mặt phẳng (SCD) và (ABCD) bằng φ sinφ=55. Khoảng cách từ điểm A đến mặt phẳng (SCD) bằng: 

Xem đáp án » 08/05/2022 5,916

Câu 5:

Cho hàm số y = f(x) xác định trên  và có đạo hàm f'x=2xx+3gx+2021 trong đó gx<0 x. Hàm số y=f1x+2021x+2022 đồng biến trên khoảng nào?

Xem đáp án » 09/05/2022 5,677

Câu 6:

Cho tích phân I=1e3lnx+1xdx. Nếu đặt t = lnx thì: 

Xem đáp án » 09/05/2022 5,258

Câu 7:

Đường tiệm cận đứng của đồ thị hàm số y=3x+1x1 có phương trình là:

Xem đáp án » 07/05/2022 5,160
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay