Câu hỏi:
12/07/2024 831Cho tam giác ABC. Xét mệnh đề dạng P ⇒ Q như sau:
“Nếu tam giác ABC vuông tại A thì tam giác ABC có AB2 + AC2 = BC2”.
Phát biểu mệnh đề Q ⇒ P và xác định tính đúng sai của hai mệnh đề P ⇒ Q và Q ⇒ P.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Ta có:
P ⇒ Q: “Nếu tam giác ABC vuông tại A thì tam giác ABC có AB2 + AC2 = BC2”.
Khi đó, P: “Tam giác ABC vuông tại A” và Q: “Tam giác ABC có AB2 + AC2 = BC2”.
Vậy mệnh đề Q ⇒ P: “Nếu tam giác ABC có AB2 + AC2 = BC2 thì tam giác ABC vuông tại A”.
Cả hai mệnh đề P ⇒ Q và Q ⇒ P đều là mệnh đề đúng (theo định lí Pythagore).CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của mỗi mệnh đề phủ định đó:
a) , x2 ≠ 2x – 2;
b) , x2 ≤ 2x – 1;
c) ;
d) , x2 – x + 1 < 0.
Câu 2:
Lập mệnh đề phủ định của mỗi mệnh đề sau và nhận xét tính đúng sai của mệnh đề phủ định đó:
a) A: “ là một phân số”;
b) B: “Phương trình x2 + 3x + 2 = 0 có nghiệm”;
c) C: “22 + 23 = 22 + 3”;
d) D: “Số 2 025 chia hết cho 15”.
Câu 4:
Hãy phát biểu một định lí toán học ở dạng mệnh đề kéo theo P ⇒ Q.
Câu 5:
Cho tam giác ABC. Từ các mệnh đề:
P: “Tam giác ABC đều”, Q: “Tam giác ABC cân và có một góc bằng 60°”, hãy phát biểu hai mệnh đề P ⇒ Q và Q ⇒ P và xác định tính đúng sai của mỗi mệnh đề đó. Nếu cả hai mệnh đề trên đều đúng, hãy phát biểu mệnh đề tương đương.
Câu 6:
Cho tam giác ABC. Xét các mệnh đề:
P: “Tam giác ABC cân”;
Q: “Tam giác ABC có hai đường cao bằng nhau”.
Phát biểu mệnh đề P ⇔ Q bằng bốn cách.
Câu 7:
Dùng kí hiệu “ ” hoặc “ ” để viết các mệnh đề sau:
a) Có một số nguyên không chia hết cho chính nó;
b) Mọi số thực cộng với 0 đều bằng chính nó.
về câu hỏi!