Câu hỏi:
12/05/2022 549Cho đường thẳng y = 2x và parabol (c là tham số thực dương). Gọi và lần lượt là diện tích của hai hình phẳng được gạch chéo trong hình vẽ bên. Khi thì c gần với số nào nhất sau đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp:
- Giả sử nghiệm của phương trình hoành độ giao điểm là
- Sử dụng: Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y = g(x) đường thẳng x = a, x = b là để tính
- Giải phương trình và thế , giải phương trình tìm b sau đó tìm c.
Cách giải:
Xét phương trình hoành độ giao điểm
Ta có
Vì nên ta có:
(do b > 0)
Vì b là nghiệm của phương trình
Vậy gần với 1 nhất.
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi S là tập hợp tất cả các số tự nhiên có 5 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc S xác suất để số đó có hai chữ số tận cùng không có cùng tính chẵn lẻ bằng:
Câu 3:
Trong không gian Oxyz, mặt cầu có tâm I(4; -4; 2) và đi qua gốc tọa độ có phương trình là:
Câu 4:
Có bao nhiêu giá trị nguyên của m thuộc đoạn [-10; 10] để hàm số đồng biến trên khoảng
Câu 5:
về câu hỏi!