Câu hỏi:
01/01/2020 4,922Đề thi kiểm tra 15 phút có 10 câu trắc nghiệm mỗi câu có bốn phương án trả lời, trong đó có một phương án đúng, trả lời đúng mỗi câu được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn một phương án. Tính xác suất để thí sinh đó đạt từ 8,0 điểm trở lên
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Với mỗi câu hỏi, thí sinh có 4 phương án lựa chọn nên số phần tử của không gian mẫu là
Gọi X là biến cố “thí sinh đó đạt từ 8,0 điểm trở lên”
TH1. Thí sinh đó làm được 8 câu ( tức là 8,0 điểm):
Chọn 8 câu trong số 10 câu hỏi và 2 câu còn lại mỗi câu có 3 cách lựa chọn
đáp án sai nên có cách để thí sinh đúng 8 câu
TH2. Thí sinh đó làm được 9 câu (tức là 9,0 điểm)
Chọn 9 câu trong số 10 câu hỏi
và câu còn lại có 3 cách lựa chọn đáp án sai
nên có cách để thí sinh đúng 9 câu
TH3. Thí sinh đó làm được 10 câu (tức là 10,0 điểm)
Chỉ có 1 cách duy nhất.
Suy ra số kết quả thuận lợi cho biến cố X là
Vậy xác suất cần tìm là
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đa giác đều 16 đỉnh. Hỏi có bao nhiêu tam giác vuông có ba đỉnh là ba đỉnh của đa giác đều đó?
Câu 3:
Có bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau trong đó chứa các chữ số 3, 4, 5 và chữ số 4 đứng cạnh chữ số 3 và chữ số 5?
Câu 4:
Lớp 12A có 20 bạn nữ, lớp 12B có 16 bạn nam. Có bao nhiêu cách chọn một bạn nữ lớp 12A và một bạn nam lớp 12B để dẫn chương trình hoạt động ngoại khóa?
Câu 5:
Gọi S là tập hợp tất cả các số tự nhiên có 3 chữ số được lập từ tập . Rút ngẫu nhiên một số thuộc tập S. Tính xác suất để rút được số mà trong số đó, chữ số đứng sau luôn lớn hơn hoặc bằng chữ số đứng trước
Câu 6:
Ba người cùng đi săn A, B, C độc lập với nhau cùng nổ súng bắn vào mục tiêu. Biết rằng xác suất bắn trúng mục tiêu của A, B, C tương ứng với 0,7; 0,6; 0,5. Tính xác suất để có ít nhất một xạ thủ bắn trúng?
Câu 7:
Trong mặt phẳng tọa độ ở góc phần tư thứ nhất ta lấy 2 điểm phân biệt; cứ thế ở các góc phần tư thứ hai, thứ ba, thứ tư ta lần lượt lấy 3, 4, 5 điểm phân biệt (các điểm không nằm trên các trục tọa độ). Trong 14 điểm đó ta lấy 2 điểm bất kỳ. Tính xác suất để đoạn thẳng nối hai điểm đó cắt hai trục tọa độ
về câu hỏi!