Câu hỏi:

12/07/2024 5,247

Cho Hình 3.49.

Cho Hình 3.49.     Chứng minh rằng:   a) d // BC;  b)   c) Trong các kết luận trên, kết luận nào được suy ra từ tính chất của (ảnh 1)

Chứng minh rằng:

 a) d // BC;

b) dAH;

c) Trong các kết luận trên, kết luận nào được suy ra từ tính chất của hai đường thẳng song song, kết luận nào được suy ra từ dấu hiệu nhận biết hai đường thẳng song song?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có dAC^=ACH^=50°.

Mà hai góc này ở vị trí so le trong nên d // BC.

Vậy d // BC.

b) Áp dụng định lí: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng còn lại” ta có:

Do BCAH,BC // d nên dAH.

Vậy dAH.

c) Trong hai kết luận trên, kết luận d // BC được suy ra từ dấu hiệu nhận biết hai đường thẳng song song.

Kết luận dAH; được suy ra từ tính chất hai đường thẳng song song.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thang ABCD có cạnh AD vuông góc với hai đáy AB và CD. Số đo góc ở đỉnh B gấp đôi số đo góc ở đỉnh C. Tính số đo các góc của hình thang đó (ảnh 1)

Do AD vuông góc với AB và CD nên BAD^=ADC^=90°.

Kẻ tia Cx là tia đối của tia CD.

Khi đó DCx^=180°.

Do Cx song song với AB nên ABC^=BCx^ (hai góc so le trong).

Có DCx^=BCD^+BCx^=180°.

BCx^=ABC^=2.BCD^ nên BCD^+2.BCD^=180°.

Hay 3.BCD^=180° nên BCD^=60°, do đó ABC^=2.BCD^=2.60°=120°.

Vậy A^=D^=90°,B^=120°,C^=60°.

Lời giải

Cho hai đường thẳng phân biệt a, b cùng vuông góc với đường thẳng c; d là một đường thẳng khác c và d vuông góc với a. Chứng minh rằng (ảnh 1)

a) Áp dụng định lí: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau” ta có:

Do ac,bc nên a // b.

Vậy a // b.

b) Áp dụng định lí: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau” ta có:

Do ca,da nên c // d.

Vậy c // d.

c) Áp dụng định lí: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng còn lại” ta có:

Do bc,c // d nên bd.

 Vậy bd.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP