Câu hỏi:

14/05/2022 3,261 Lưu

Trong không gian với hệ tọa độ Oxyz, cho điểm M(0;-1;2)   và hai đường thẳng d1:x11=y+21=z32,d2:x+12=y41=z24.  Phương trình đường thẳng đi qua M,  cắt cả d1  d2  

A.x92=y+192=z+38 .
B. x3=y+13=z24 .
C.x9=y+19=z216 .
D.x9=y+19=z216 .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Gọi Δ  là đường thẳng cần tìm.

Δd1=At1+1;t12;2t1+3;Δd2=B2t21;t2+4;4t2+2.

Ta có M,A,B thẳng hàng khi MA=kMBt1+1=k2t21t11=kt2+52t1+1=4kt2t1=72k=12kt2=2t1=72t2=4

Suy ra MB=9;9;16 .

Đường thẳng Δ  đi qua M(0;1;2),  một vectơ chỉ phương là u=9;9;16  có phương trình là: Δ:x9=y+19=z216 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Gọi M là trung điểm của BC, suy ra AMBC .

Ta có AMBCBCSABC(SAM)BCSM .

Do đó (SBC),(ABC)¯=(SM,AM)^=SMA^

Tam giác ABC đều cạnh a, suy ra trung tuyến AM=a32  .

Tam giác vuông SAM, có sinSMA^=SASM=SASA2+AM2=255 .

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a . Cạnh bên SA=a căn 3  và vuông góc với mặt đáy  . Gọi   là góc giữa hai mặt phẳng  (SBC) và (ABC) . Mệnh đề nào sau đây đúng? (ảnh 1)

Câu 2

A. (;1) .
B. (;1)(1;+) .        
C. (;0](1;+) .
D. [0;+) .

Lời giải

Đáp án A

Đặt t=tanx  (khi 0;π4  thì t0;1 ).

Khi đó bài toán trở thành tìm m để hàm số y=t+mmt+1   nghịch biến trên (0;1).

TH1: m=0, hàm số trở thành y=t hàm số này đồng biến trên (0;1); nên m=0 không thỏa mãn.

TH2: m0 .

TXĐ: D=/1m.

Ta có y'=1m2(mt+1)2 .

Để hàm số nghịch biến trên (0;1) thì

y'<0,x(0;1)1m(0;1)1m2<01m01m1m<1m>1m<00<01m<1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Đồ thị hàm số có đúng hai tiệm cận ngang là y=0,y=5  và không có tiệm cận đứng.         
B. Đồ thị hàm số có đúng hai tiệm cận ngang là y=0, y=5 và chỉ có tiệm cận đứng là x=1.
C. Đồ thị hàm số chỉ có tiệm cận ngang là y=0 và chỉ có tiệm cận đứng là x=1.

D. Đồ thị hàm số chỉ có tiệm cận ngang là y=5 và chỉ có tiệm cận đứng là x=1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP