Câu hỏi:

15/05/2022 254 Lưu

Cho hàm số y=f(x). Hàm số y=f'(x) có bảng biến thiên như sau:

Cho hàm số y=f(x). Hàm số y=f'(x) có bảng biến thiên như sau: (ảnh 1)

Tất cả cá giá trị của tham số m để bất phương trình m+x2<f(x)+13x3 nghiệm đúng với mọi x(0;3)

A. m<f(0).

B. mf(0)

C. mf(3) .
D. m<f(1)23 .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Bất phương trình đã cho tương đương với: m<f(x)+13x3x2,x(0;3) .

Xét hàm số g(x)=f(x)+13x3x2  trên (0;3) .

Bài toán trở thành tìm m để m<g(x),x(0;3)mmin[0;3]g(x) .

Ta có g'(x)=f'(x)+x22x .

Nhân xét: Với x(0;3)f'(x)>11<x22x<3g'(x)>0 .

Do đó ta có mmin[0;3]g(x)=g(0)=f(0)+13.0302=f(0) .

Vậy mf(0) . Chọn B.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Gọi M là trung điểm của BC, suy ra AMBC .

Ta có AMBCBCSABC(SAM)BCSM .

Do đó (SBC),(ABC)¯=(SM,AM)^=SMA^

Tam giác ABC đều cạnh a, suy ra trung tuyến AM=a32  .

Tam giác vuông SAM, có sinSMA^=SASM=SASA2+AM2=255 .

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a . Cạnh bên SA=a căn 3  và vuông góc với mặt đáy  . Gọi   là góc giữa hai mặt phẳng  (SBC) và (ABC) . Mệnh đề nào sau đây đúng? (ảnh 1)

Câu 2

A. Đồ thị hàm số có đúng hai tiệm cận ngang là y=0,y=5  và không có tiệm cận đứng.         
B. Đồ thị hàm số có đúng hai tiệm cận ngang là y=0, y=5 và chỉ có tiệm cận đứng là x=1.
C. Đồ thị hàm số chỉ có tiệm cận ngang là y=0 và chỉ có tiệm cận đứng là x=1.

D. Đồ thị hàm số chỉ có tiệm cận ngang là y=5 và chỉ có tiệm cận đứng là x=1.

Lời giải

Đáp án B

Ta có limxf(x)=0y=0  là tiệm cận ngang của đồ thị hàm số.

limx+f(x)=5y=5 là tiệm cận ngang của đồ thị hàm số.

limx1f(x)=x=1 là tiệm cận đứng của đồ thị hàm số.

Câu 3

A. (;1) .
B. (;1)(1;+) .        
C. (;0](1;+) .
D. [0;+) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP