Câu hỏi:

17/05/2022 195 Lưu

Trong không gian tọa độ Oxyz, cho mặt phẳng P:x2y+2z+1=0 và điểm I(1; -1; 1). Viết phương trình mặt cầu tâm I và tiếp xúc với mặt phẳng (P)

A. x12+y+12+z12=4

B. x+12+y12+z+12=2

C. x12+y+12+z12=2

D. x+12+y12+z+12=4

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phương pháp:

- Mặt cầu tâm I và tiếp xúc với mặt phẳng (P) có bán kính R=dI;P.

- Khoảng cách từ điểm Ix0;y0;z0 đến mặt phẳng P:Ax+By+Cz+D=0 

                                         dI;P=Ax0+By0+Cz0+DA2+B2+C2.

- Mặt cầu tâm I(a; b; c), bán kính R có phương trình S:xa2+yb2+zc2=R2.

Cách giải:

Bán kính mặt cầu là R=dI;P=12.1+2.1+112+22+22=2.

Vậy phương trình mặt cầu tâm I và tiếp xúc với mặt phẳng (P) là: x12+y+12+z12=4.

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hàm số nghịch biến trên khoảng ;1.     

B. Hàm số nghịch biến trên           

C. Hàm số đồng biến trên khoảng 1;+.       
D. Hàm số đồng biến trên \1.

Lời giải

Phương pháp:

Hàm phân thức bậc nhất trên bậc nhất đơn điệu trên từng khoảng xác định của nó.

Cách giải:

TXĐ: D=\1. Ta có y=2x1x1y'=1x12<0xD.

Vậy hàm số y=2x1x1 nghịch biến trên ;1,1;+.

Chọn A.

Câu 2

A. fx=ln3x2+5

B. fx=3ln3x2+5

C. fx=33x22+8

D. Fx=13ln3x2+5

Lời giải

Phương pháp:

Sử dụng công thức tính nguyên hàm mở rộng: 1ax+bdx=1alnax+b+C.

Cách giải:

Fx=13x2dx=13ln3x2+C.

 

Vì x23;+3x2>0Fx=13ln3x2+C.

Mà F1=5C=5.

Vậy Fx=13ln3x2+5.

Chọn D.

Câu 3

A. (-2; 2)

B. ;2

C. 2;+

D. ;+

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. y'=x.2x1+1xln2

B. y'=2x+1xln2

C. y'=2xln2+ln2x

D. y'=2xln2+1xln2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP