Câu hỏi:

19/05/2022 815 Lưu

Cho hàm số y=fx=2xmx+2. Tìm m để max0;2fx+min0;2fx=5.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

Hàm phân thức bậc nhất trên bậc nhất đơn điệu trên từng khoảng xác định nên đạt GTNN và GTLN trên 1 đoạn xác định tại 2 điểm đầu mút.

Cách giải:

Hàm số đã cho xác định trên [0; 2], do đó nó đơn điệu trên [0; 2].

max0;2fx+min0;2fx=f0+f2

m2+4m4=5

2m+4m=20

m=8

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp:

Hàm phân thức bậc nhất trên bậc nhất đơn điệu trên từng khoảng xác định của nó.

Cách giải:

TXĐ: D=\1. Ta có y=2x1x1y'=1x12<0xD.

Vậy hàm số y=2x1x1 nghịch biến trên ;1,1;+.

Chọn A.

Câu 2

Lời giải

Phương pháp:

Sử dụng công thức tính nguyên hàm mở rộng: 1ax+bdx=1alnax+b+C.

Cách giải:

Fx=13x2dx=13ln3x2+C.

 

Vì x23;+3x2>0Fx=13ln3x2+C.

Mà F1=5C=5.

Vậy Fx=13ln3x2+5.

Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP