Câu hỏi:

19/05/2022 606 Lưu

Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Đặt I1=abfxdx,I2=acfxdx,I3=adfxdx,I4=cdfxdx. Phát biểu nào dưới đây là đúng?

A. I1<I2<I3<I4

B. I2<I1<I4<I3

C. I2<I1<I3<I4

D. I1<I2<I4<I3

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phương pháp:

Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y = g(x), đường thẳng x = a, x = b là S=abfxgxdx.

Cách giải:

Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Đặt (ảnh 1)

Ta có:

I1=abfxdx=S1

I2=acfxdx=abfxdx+bcfxdx=S1S2

I3=adfxdx=abfxdx+bcfxdx+cdfxdx=S1S2+S3=I2+S3

I4=cdfxdx=S3

 

Ta có I2=S1S2<S1=I1 nên loại đáp án A và D.

     I3=I2+S3I3>I2I3>I4

Dễ thấy S2<S1<S3I1<I4.

Vậy I2<I1<I4<I3.

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hàm số nghịch biến trên khoảng ;1.     

B. Hàm số nghịch biến trên           

C. Hàm số đồng biến trên khoảng 1;+.       
D. Hàm số đồng biến trên \1.

Lời giải

Phương pháp:

Hàm phân thức bậc nhất trên bậc nhất đơn điệu trên từng khoảng xác định của nó.

Cách giải:

TXĐ: D=\1. Ta có y=2x1x1y'=1x12<0xD.

Vậy hàm số y=2x1x1 nghịch biến trên ;1,1;+.

Chọn A.

Câu 2

A. fx=ln3x2+5

B. fx=3ln3x2+5

C. fx=33x22+8

D. Fx=13ln3x2+5

Lời giải

Phương pháp:

Sử dụng công thức tính nguyên hàm mở rộng: 1ax+bdx=1alnax+b+C.

Cách giải:

Fx=13x2dx=13ln3x2+C.

 

Vì x23;+3x2>0Fx=13ln3x2+C.

Mà F1=5C=5.

Vậy Fx=13ln3x2+5.

Chọn D.

Câu 3

A. (-2; 2)

B. ;2

C. 2;+

D. ;+

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. y'=x.2x1+1xln2

B. y'=2x+1xln2

C. y'=2xln2+ln2x

D. y'=2xln2+1xln2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP