Cho hàm số f(x) có đạo hàm cấp hai trên Biết f(0) và hàm số y = f'(x) có đồ thị như hình vẽ bên. Phát biểu nào sau đây đúng?
Cho hàm số f(x) có đạo hàm cấp hai trên Biết f(0) và hàm số y = f'(x) có đồ thị như hình vẽ bên. Phát biểu nào sau đây đúng?
Quảng cáo
Trả lời:
Phương pháp:
- Sử dụng: Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y = g(x), đường thẳng x = a, x = b là Tính từ đó so sánh f(3), f'(3).
- Từ đồ thị hàm số f'(x) suy ra BXD hàm số f''(x) so sánh f''(3) với 0.
Cách giải:
Dựa vào đồ thị hàm số ta có f'(3) = 0.
Ta có nên
Xét hàm số f'(x) trên , hàm số có 2 điểm cực trị
Ta có BXD f''(x) như sau:

Vậy
Chọn C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
Hàm phân thức bậc nhất trên bậc nhất đơn điệu trên từng khoảng xác định của nó.
Cách giải:
TXĐ: Ta có
Vậy hàm số nghịch biến trên
Chọn A.
Lời giải
Phương pháp:
Sử dụng công thức tính nguyên hàm mở rộng:
Cách giải:
Vì
Mà
Vậy
Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.