Câu hỏi:

19/05/2022 976 Lưu

Cho hàm số f(x) có đạo hàm cấp hai trên 0;+. Biết f(0) và hàm số y = f'(x) có đồ thị như hình vẽ bên. Phát biểu nào sau đây đúng? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

- Sử dụng: Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y = g(x), đường thẳng x = a, x = b S=abfxgxdx. Tính 03f'xdx, từ đó so sánh f(3), f'(3).

- Từ đồ thị hàm số f'(x) suy ra BXD  hàm số f''(x) so sánh f''(3) với 0.

Cách giải:

Dựa vào đồ thị hàm số ta có f'(3) = 0.

Ta có S=03f'xdx=03f'xdx=f0f3>0 nên f3<f0=0f3<f'3.

Xét hàm số f'(x) trên 0;+, hàm số có 2 điểm cực trị x=a0;3x=b>3.

Ta có BXD f''(x) như sau:

Cho hàm số f(x) có đạo hàm cấp hai trên  Biết f(0) và hàm số (ảnh 1)

f''3>0=f'3.

Vậy f3<f'3<f''3.

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp:

Hàm phân thức bậc nhất trên bậc nhất đơn điệu trên từng khoảng xác định của nó.

Cách giải:

TXĐ: D=\1. Ta có y=2x1x1y'=1x12<0xD.

Vậy hàm số y=2x1x1 nghịch biến trên ;1,1;+.

Chọn A.

Câu 2

Lời giải

Phương pháp:

Sử dụng công thức tính nguyên hàm mở rộng: 1ax+bdx=1alnax+b+C.

Cách giải:

Fx=13x2dx=13ln3x2+C.

 

Vì x23;+3x2>0Fx=13ln3x2+C.

Mà F1=5C=5.

Vậy Fx=13ln3x2+5.

Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP