Câu hỏi:
13/07/2024 4,538Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án: \(\frac{{a\sqrt 6 }}{6}\)
Phương pháp giải:
- Gọi M là trung điểm của BC, trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {H \in SM} \right)\), chứng minh \(OH \bot \left( {SBC} \right)\).
- Áp dụng định lí Pytago và hệ thức lượng trong tam giác vuông tính khoảng cách.
Giải chi tiết:
Gọi M là trung điểm của BC, suy ra OM là đường trung bình của tam giác ABC.
\( \Rightarrow OM\parallel AB\), mà \(AB \bot BC\)\( \Rightarrow OM \bot BC\) và \(OM = \frac{1}{2}AB = \frac{a}{2}\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot OM}\\{BC \bot SO{\mkern 1mu} {\mkern 1mu} \left( {SO \bot \left( {ABCD} \right)} \right)}\end{array}} \right.\)\( \Rightarrow BC \bot \left( {SOM} \right)\)
Trong (SOM) kẻ \(OH \bot SM{\mkern 1mu} {\mkern 1mu} \left( {O \in SM} \right)\), ta có:
\(\left\{ {\begin{array}{*{20}{l}}{BC \bot \left( {SOM} \right) \Rightarrow BC \bot OH}\\{OH \bot SM}\end{array}} \right.\)\( \Rightarrow OH \bot \left( {SBC} \right)\)
\( \Rightarrow d\left( {O;\left( {SBC} \right)} \right) = OH\).
Tam giác SBC đều cạnh a nên \(SM = \frac{{a\sqrt 3 }}{2}\).
Áp dụng định lí Pytago trong tam giác vuông SOM có: .
Áp dụng hệ thức lượng trong tam giác vuông SOM có: \(OH = \frac{{SO.OM}}{{SM}} = \frac{{\frac{a}{{\sqrt 2 }}.\frac{a}{2}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{a\sqrt 6 }}{6}\).
Vậy \(d\left( {O;\left( {SBC} \right)} \right) = \frac{{a\sqrt 6 }}{6}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 5:
Một chất điểm chuyển động với phương trình trong đó , t được tính bằng giây (s) và s được tính bằng mét (m). Vận tốc của chất điểm tại thời điểm t = 3(s) bằng
về câu hỏi!