Câu hỏi:
12/07/2024 296Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án: \({30^0}\)
Phương pháp giải:
- Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.
- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông để tính góc.
Giải chi tiết:
Gọi M là trung điểm của \(B'C'\), do tam giác \(A'B'C'\) đều nên \(A'M \bot B'C'\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{B'C' \bot A'M}\\{B'C' \bot AA'}\end{array}} \right. \Rightarrow B'C' \bot \left( {AA'M} \right)\), suy ra \(B'C' \bot AM\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\left( {AB'C'} \right) \cap \left( {A'B'C'} \right) = B'C'}\\{AM \subset \left( {AB'C'} \right);{\mkern 1mu} {\mkern 1mu} AM \bot B'C'}\\{A'M \subset \left( {A'B'C'} \right);{\mkern 1mu} {\mkern 1mu} A'M \bot B'C'}\end{array}} \right.\)
\( \Rightarrow \angle \left( {\left( {AB'C'} \right);\left( {A'B'C'} \right)} \right) = \angle \left( {AM;A'M} \right) = \angle A'MA\).
Tam giác \(A'B'C'\) đều cạnh 2a nên \(A'M = \frac{{2a\sqrt 3 }}{2} = a\sqrt 3 \).
Xét tam giác vuông \[AA'M\] có: \(\tan \angle A'MA = \frac{{AA'}}{{A'M}} = \frac{a}{{a\sqrt 3 }} = \frac{1}{{\sqrt 3 }}\)\[ \Rightarrow \angle A'MA = {30^0}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Đọc đoạn trích sau đây và trả lời các câu hỏi:
Từ ấy trong tôi bừng nắng hạ
Mặt trời chân lý chói qua tim
Hồn tôi là một vườn hoa lá
Rất đậm hương và rộn tiếng chim
(Từ ấy – Tố Hữu, Ngữ văn 11, Tập hai, NXB Giáo dục)
Biện pháp tu từ được sử dụng trong hai câu thơ “Từ ấy trong tôi bừng nắng hạ/ Mặt trời chân lý chói qua tim”
Câu 3:
Câu 5:
Câu 6:
Câu 7:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Câu hỏi điền từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
về câu hỏi!