Câu hỏi:

12/07/2024 169

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(a\), cạnh bên \(SA = a\) \(SA \bot \left( {ABC} \right)\). Gọi \(I\) là trung điểm của \(BC\). Khoảng cách giữa hai đường thẳng \(SI\)\(AB\) bằng:

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: \(\frac{{\sqrt {57} a}}{{19}}\)

Phương pháp giải:

- Gọi \(J\) là trung điểm của \(AC\), chứng minh \(d\left( {AB;SI} \right) = d\left( {A;\left( {SIJ} \right)} \right)\).

- Gọi \(M\) là trung điểm của \(AB\). Trong \(\left( {ABC} \right)\) kẻ \(AH//CM\), trong \(\left( {SAH} \right)\) kẻ \(AK \bot SH{\mkern 1mu} \left( {K \in SH} \right)\), chứng minh \(AK \bot \left( {SIJ} \right)\).

- Sử dụng hệ thức lượng trong tam giác vuông để tính khoảng cách.

Giải chi tiết:

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên (ảnh 1)

Gọi \(J\) là trung điểm của \(AC\) ta có \(IJ//AB \Rightarrow AB//\left( {SIJ} \right) \supset SI\)

\( \Rightarrow d\left( {AB;SI} \right) = d\left( {AB;\left( {SIJ} \right)} \right) = d\left( {A;\left( {SIJ} \right)} \right)\).

Gọi \(M\) là trung điểm của \(AB\), vì \(\Delta ABC\) đều nên \(CM \bot AB \Rightarrow CM \bot IJ\).

Trong \(\left( {ABC} \right)\) kẻ \(AH//CM \Rightarrow AH \bot IJ\) \(\left( {H \in IJ} \right)\). Ta có \(\left\{ {\begin{array}{*{20}{l}}{IJ \bot AH}\\{IJ \bot SA}\end{array}} \right. \Rightarrow IJ \bot \left( {SAH} \right)\).

Trong \(\left( {SAH} \right)\) kẻ \(AK \bot SH{\mkern 1mu} \left( {K \in SH} \right)\) ta có \(\left\{ {\begin{array}{*{20}{l}}{AK \bot SH}\\{AK \bot IJ{\mkern 1mu} {\mkern 1mu} \left( {do{\mkern 1mu} {\mkern 1mu} IJ \bot \left( {SAH} \right)} \right)}\end{array}} \right.\) \( \Rightarrow AK \bot \left( {SIJ} \right)\)

\( \Rightarrow d\left( {A;\left( {SIJ} \right)} \right) = AK\).

Dễ dàng chứng minh được \(AH = \frac{1}{2}CM = \frac{{a\sqrt 3 }}{4}\).

Áp dụng hệ thức lượng trong tam giác vuông \(SAH\): \(AK = \frac{{SH.AH}}{{\sqrt {S{H^2} + A{H^2}} }} = \frac{{a.\frac{{a\sqrt 3 }}{4}}}{{\sqrt {{a^2} + \frac{{3{a^2}}}{{16}}} }} = \frac{{a\sqrt {57} }}{{19}}\).

Vậy \(d\left( {AB;SI} \right) = \frac{{a\sqrt {57} }}{{19}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tập hợp tất cả các điểm biểu diễn các số phức \(z\) thỏa mãn |(1+i)z-5+i|=2 là một đường tròn tâm \(I\) và bán kính \(R\) lần lượt là:

Xem đáp án » 24/05/2022 10,125

Câu 2:

Đọc đoạn trích sau đây và trả lời các câu hỏi:

Từ ấy trong tôi bừng nắng hạ

Mặt trời chân lý chói qua tim

Hồn tôi là một vườn hoa lá

Rất đậm hương và rộn tiếng chim

(Từ ấy – Tố Hữu, Ngữ văn 11, Tập hai, NXB Giáo dục)

Biện pháp tu từ được sử dụng trong hai câu thơTừ ấy trong tôi bừng nắng hạ/ Mặt trời chân lý chói qua tim

Xem đáp án » 20/05/2022 9,925

Câu 3:

Ở toC khi cho 2 gam MgSO4 vào 200 gam dung dịch MgSO4 bão hòa đã làm cho m gam tinh thể muối MgSO4.nH2O (A) kết tinh. Nung m gam tinh thể A cho đến khi mất nước hoàn toàn thì thu được 3,16 gam MgSO4. Xác định công thức phân tử của tinh thể muối A. Cho biết độ tan của MgSO4 ở toC là 35,1 gam.

Xem đáp án » 20/05/2022 6,632

Câu 4:

Văn bản trên thuộc thể loại gì?

Xem đáp án » 20/05/2022 6,452

Câu 5:

Một người gửi tiết kiệm 200 triệu đồng với lãi suất 5% một năm và lãi hàng năm được nhập vào vốn. Sau ít nhất bao nhiêu năm người đó nhận được số tiền nhiều hơn 3003 triệu đồng?

Xem đáp án » 20/05/2022 5,986

Câu 6:

Có bao nhiêu số nguyên \(m\) để hàm số f(x)=x4-2(m2-3m)x2+3 đồng biến trên khoảng \(\left( {2; + \infty } \right)?\)

Xem đáp án » 24/05/2022 5,892

Câu 7:

Cho các polime sau: polietilen, poliacrilonitrin, tơ visco, nhựa novolac, xenlulozơ, cao su buna-N, tơ nilon-6,6. Số polime tổng hợp là

Xem đáp án » 20/05/2022 3,831

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store