Câu hỏi:

20/05/2022 362

Cho hình chóp S.ABCD có đáy là hình vuông. Hình chiếu vuông góc H của S nằm trong hình vuông ABCD. Hai mặt phẳng (SAD),(SBC)   vuông góc với nhau. Góc giữa hai mặt phẳng (SAB),(SBC)   bằng 60°, góc giữa hai mặt phẳng (SAB),(SAD)   bằng 45°. Biết rằng khoảng cách từ H tới (SAB) bằng a. Thể tích khối chóp S.ABCD

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có hai mặt phẳng (SAD),(SBC)   vuông góc với nhau suy ra MSN^=90°  với M,N là các hình chiếu vuông góc của S trên các cạnh AD và BC. Khi đó H nằm trên đoạn MN.

Lại có .32=sin60°=dN;SABdN;SB=adN;SB22=sin45°=dM;SABdM;SA=adM;SA

Do vậy dN;SB=2a3,dM;SA=a2 , . Bên cạnh đó ta lại 1dN;SB2=34a2=1SN2+1NB21dM;SA2=12a2=1SM2+1MA2

Do NB=MA=HK suy ra 54a2=1SM2+1SN2+2HK2=1SH2+1HK2+1HK2=1a2+1HK2HK=2a .

Vậy 1SN2=34a214a2SN=a2;1SM2=12a214a2SM=2aSH=2a3;MN=a6 

Thể tích khối chóp S.ABCDVS.ABCD=13.SABCD.SH=13.a62.2a3=4a333 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Giả sử Mx0;y0  là tiếp điểm của tiếp tuyến và đồ thị hàm số (C).

Suy ra y'x0=6x026x012  là hệ số góc của tiếp tuyến.

Hệ số góc của đường thẳng d là  k = -12.

Tiếp tuyến song song với đường thẳng d suy ra

y'x0=k6x026x012=12x0=0y0=1x0=1y0=12 .

Phương trình tiếp tuyến của đồ thị hàm số (C) tại  M10;1 y=12x+1 .

Suy ra a=12b=12a+b=23 .

Phương trình tiếp tuyến của đồ thị hàm số (C) tại M21;12  y=12x  (loại do trùng với đường thẳng d: 12x+y=0 )

Lời giải

Đáp án D

Tập xác định D=R.

Đặt t=cosx,0t1y=ft=2t2+t+1t+10t1

Ta có ,f0=1,f1=2 .

Vậy miny=1,maxy=2M+m=3 , .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Giá trị của biểu thức P=7+4320224372021  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay