Câu hỏi:

12/07/2024 5,125 Lưu

Từ một khu vực có thể quan sát hai đỉnh núi, ta có thể ngắm và đo để xác định khoảng cách giữa hai đỉnh núi đó. Hãy thảo luận để đưa ra các bước cho một cách đo.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bước 1: Tại khu vực quan sát, đặt một cọc tiêu cố định tại vị trí A. Kí hiệu hai đỉnh núi lần lượt là điểm B và điểm C.

Đứng tại A, ngắm điểm B và điểm C để đo góc tạo bởi hai hướng ngắm đó.

Bước 2: Đo khoảng cách từ vị trí ngắm đến từng đỉnh núi, tức là tính AB, AC.

* Tính AB bằng cách:

+ Đứng tại A, ngắm đỉnh núi B để xác định góc ngắm so với mặt đất, kí hiệu là góc α.

+ Theo hướng ngắm, đặt tiếp cọc tiêu tại D gần đỉnh núi hơn và đo đoạn AD. Xác định góc ngắm tại điểm D, kí hiệu là góc β.

Ta có hình vẽ:

Từ một khu vực có thể quan sát hai đỉnh núi, ta có thể ngắm và đo để xác định khoảng cách (ảnh 1)

Ta có:ADB^=180oβ ; DBA^=βα .

Áp dụng định lí sin vào ∆ABD, ta được: ABsinADB^=DAsinDBA^

AB=sinADB^.DAsinDBA^

AB=sin(180°β).DAsin(βα)

* Tương tự ngắm và đo để xác định AC.

Ta có: AEC^=180oδ ;ACE^=δγ .

Áp dụng định lí sin vào ∆ACE, ta được: ACsinAEC^=AEsinACE^

AC=sinAEC^  .  AEsinACE^AC=sin(180oδ).AEsin(δγ)

 

 

Bước 3: Tính khoảng cách giữa hai đỉnh núi, bằng cách áp dụng định lí côsin cho tam giác ABC để tính độ dài cạnh BC.

Ta có: BC2 = AB2 + AC2 – 2AB.AC.cosBAC.

Với AB, AC, góc BAC đã biết ở các bước trên, thay vào ta tính được BC chính là khoảng cách giữa hai đỉnh núi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có sơ đồ di chuyển của tàu như sau”

Một tàu đánh cá xuất phát từ cảng A, đi theo hướng S70 độ E với vận tốc (ảnh 1)

Trong đó: B là nơi động cơ bị hỏng, C là vị trí neo đậu của tàu trên hòn đảo.

Khoảng cách từ cảng A tới đảo nơi tàu neo đậu là đoạn AC (hay b).

Ban đầu tàu di chuyển theo hướng S70oE nên  = 70o.

Sau khi động cơ bị hỏng, tàu trôi theo hướng Nam nên BC // AS.

ABC^=180oBAS^=110o.

Quãng đường tàu đi được sau 90 phút hay 1,5 giờ (ngay trước khi hỏng động cơ) là:

70 . 1,5 = 105 (km) hay c = 105.

Quãng đường tàu trôi tự do là:

8 . 2 = 16 (km) hay a = 16.

a) Áp dụng định lí cosin cho tam giác ABC, ta có:

b2 = a2 + c2 − 2ac . cosB

Þ b2 = 162 + 1052 – 2 . 16 . 105 . cos 110o ≈ 12 430,18

Þ b ≈ 111,49.

Vậy khoảng cách từ cảng A tới đảo nơi tàu neo đậu là khoảng 111,49 km.

b) Theo sơ đồ, hướng từ cảng A tới đảo nơi tàu neo đậu là oE với α = .

Áp dụng định lí sin cho tam giác ABC, ta có:

asinA=bsinB=csinCsinA=a.sinBb

B^=110o ; b ≈ 111,49; a = 16.

sinA=16.sin110°111,490,135A^8° (do A^<90°  ).

Þ α ≈ 70° – 8° = 62°.

Vậy hướng từ cảng A đến đảo nơi tàu neo đậu là S62°E.

Lời giải

Cho tam giác ABC có a = 6, b = 5, c = 8. Tính cosA, S, r. (ảnh 1)

Xét ΔABC, có:

cosA=b2+c2a22bc=52+82622.5.8=0,6625(định lí cos)

A^=48,510

sinA0,749

Diện tích tam giác ABC là:

SABC=12.b.c.sinA=12.5.8.0,749=14,98(đvdt).

Nửa chu vi của tam giác ABC là: p=5+8+62=192

Ta có: S = pr

r=Sp=14,981921,577.

Vậy cosA = 0,6625, S  14,98 đvdt, r 1,577.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP