Câu hỏi:
12/07/2024 13,895Cho tam giác ABC có trung tuyến AM. Chứng minh rằng:
a)
b) MA2 + MB2 – AB2 = 2MA.MB.cos và MA2 + MC2 – AC2 = 2MA.MC.cos;
c) (công thức đường trung tuyến).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a)
Ta có:
b) Áp dụng định lí côsin trong ΔAMB, ta có:
AB2 = MA2 + MB2 – 2MA.MB.cos
⇔ MA2 + MB2 – AB2 = 2MA.MB.cos (1)
Áp dụng định lí côsin trong ΔAMC, ta có:
AC2 = MA2 + MC2 – 2MA.MC.cos
⇔ MA2 + MC2 – AC2 = 2MA.MC.cos (2)
c) Cộng vế với vế của (1) với (2), ta được:
MA2 + MB2 – AB2 + MA2 + MC2 – AC2
= 2MA.MB.cos + 2MA.MC.cos
(Vì )
2MA2 = AB2 + AC2 – – + 2MA.MB.cos + 2MA.MB.cos
Û 2MA2 = AB2 + AC2 – + 2MA.MB.(cos + cos )
Û 2MA2 = AB2 + AC2 –
Û
(công thức đường trung tuyến).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Tính giá trị các biểu thức sau:
a) M = sin450.cos450 + sin300;
b) ;
c) P = 1 + tan2600;
d)
Câu 3:
Cho tam giác ABC. Chứng minh rằng:
a) Nếu góc A nhọn thì b2 + c2 > a2;
b) Nếu góc A tù thì b2 + c2 < a2;
c) Nếu góc A vuông thì b2 + c2 = a2.
Câu 4:
Cho tam giác ABC có . Khẳng định nào sau đây là đúng?
a)
A.
B.
C.
D.
b)
A.
B.
C.
D.
c)
A. .
B.
C.
D. b2 = c2 + a2 – 2ca.cos1350.
Câu 5:
Trên biển, tàu B ở vị trí cách tàu A 53 km về hướng N340E. Sau đó, tàu B chuyển động thẳng đều với vận tốc có độ lớn 30km/h về hướng đông và tàu A chuyển động thẳng đều với vận tốc có độ lớn 50km/h để gặp tàu B.
a) Hỏi tàu A cần phải chuyển động theo hướng nào?
b) Với hướng chuyển động đó thì sau bao lâu tàu A gặp tàu B?
Câu 6:
Cho tam giác ABC. Khẳng định nào sau đây là đúng?
a)
A.
B.
C. a2 = b2 + c2 + 2bc.cosA.
D. S = r(a + b + c).
b)
A. sinA = sin(B + C).
B. cosA = cos(B + C).
C. cosA > 0.
D. sinA ≤ 0
về câu hỏi!