Câu hỏi:

21/05/2022 124

Cho hàm số y=fx  liên tục trên R và a>0. Giả sử rằng với mọi x0;a , ta có fx>0  fxfax=1 . Giá trị tích phân I=0adx1+fx  là:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Từ giả thiết, suy ra fax=1fx .

Đặt t=axdt=dx . Đổi cận x=0t=ax=at=0.

Khi đó I=a0dt1+fat=0adt1+1ft=0aftdtft+1=0afxdxfx+1 .

Suy ra2I=I+I=0afxdxfx+1+0afxdxfx+1=0adx=aI=a2 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, cho hai mặt phẳngP:3x2y+2z5=0  Q:4x+5yz+1=0 . Các điểm A, B phân biệt cùng thuộc giao tuyến của hai mặt phẳng (Q) và (P). Khi đó AB  cùng phương với vectơ nào sau đây?

Xem đáp án » 21/05/2022 1,050

Câu 2:

Người ta cần làm một hộp theo dạng một khối lăng trụ đều không nắp với thể tích lớn nhất từ một miếng tôn hình vuông có cạnh là 1 mét. Thể tích của hộp cần làm là:

Xem đáp án » 21/05/2022 990

Câu 3:

Hàm số y=log73x+1  có tập xác định là:

Xem đáp án » 21/05/2022 895

Câu 4:

Cho hàm số y=f(x) có bảng biến thiên như sau:

Cho hàm số  y=f(x) có bảng biến thiên như sau:   (ảnh 1)

Đồ thị hàm số y=1f2020x2  có bao nhiêu tiệm cận đứng?

Xem đáp án » 21/05/2022 526

Câu 5:

Cho F(x) là một nguyên hàm của f(x) trên [0;1], biết F1=2  11x+1Fxdx=1 . Giá trị tích phân S=11x+12fxdx  là:

Xem đáp án » 21/05/2022 453

Câu 6:

Cho log1215=a . Khẳng định nào sau đây đúng?

Xem đáp án » 21/05/2022 425

Câu 7:

Cho các hàm số y=x3  y=x13  cùng xét trên có đồ thị như hình vẽ bên. Gọi các điểm AB lần lượt nằm trên các đồ thị đó sao cho AOB là tam giác đều. Biết rằng tồn tại hai tam giác như vậy với diện tích lần lượt là S1  S2  trong đó S1<S2  . Tỷ số S2S1  bằng:

Cho các hàm số   và   cùng xét trên có đồ thị như hình vẽ bên. Gọi các điểm A và B lần lượt  (ảnh 1)

Xem đáp án » 21/05/2022 371

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store