Câu hỏi:
24/05/2022 8,934Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp giải: - Viết phương trình mặt phẳng \(\left( {ABC} \right)\)
- Gọi \(I\left( {x;y;z} \right)\)là tâm đường tròn ngoại tiếp tam giác ABC. Giải hệ \[\left\{ \begin{array}{l}IA = IB\\IA = IC\\I \in (ABC)\end{array} \right.\] tìm tâm I.
- Trong không gian \[Oxyz\], mặt phẳng đi qua điểm \[M\left( {{x_0};{y_0};{z_0}} \right)\;\]và nhận làm vectơ pháp tuyến có phương trình là: \[A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\].
Giải chi tiết:
Ta có:
\( \Rightarrow \left( {ABC} \right)\) nhận là 1 VTPT.
⇒ Phương trình mặt phẳng \(\left( {ABC} \right)\)là: \(1\left( {x - 4} \right) + 3\left( {y - 1} \right) + 1\left( {z - 3} \right) = 0 \Leftrightarrow x + 3y + z - 10 = 0\).
Gọi \(I\left( {x;y;z} \right)\) là tâm đường tròn ngoại tiếp tam giác ABC.
Khi đó ta có: \[\left\{ \begin{array}{l}IA = IB\\IA = IC\\I \in (ABC)\end{array} \right.\]
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}{\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 3} \right)^2} = {\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 5} \right)^2}\\{\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 3} \right)^2} = {\left( {x - 4} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 3} \right)^2}\\x + 3y + z - 10 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 4x + 4z = 4\\4y - 12z = 8\\x + 3y + z - 10 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{ - 6}}{{11}}\\y = \frac{{37}}{{11}}\\z = \frac{5}{{11}}\end{array} \right.\end{array}\)
Vậy phương trình mặt phẳng đi qua I và vuông góc với AB là:
\[ - 2\left( {x + \frac{6}{{11}}} \right) + 2\left( {z - \frac{5}{{11}}} \right) = 0 \Leftrightarrow 2x - 2z + 2 = 0 \Leftrightarrow x - z + 1 = 0\]
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 6:
về câu hỏi!