Câu hỏi:

22/05/2022 341

Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm B2;1;3 , đồng thời vuông góc với hai mặt phẳng Q:x+y+3z=0   R:2xy+z=0   

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Ta có:  n1=1;1;3 n2=2;1;1   lần lượt là các vecto pháp tuyến của hai mặt phẳng (Q) và (R).

Vì mặt phẳng (P) vuông góc với hai mặt phẳng (Q) và (R) nên ta chọn vecto pháp tuyến mặt phẳng (P) là  n=n1,n2=4;5;3

Mặt phẳng  đi qua điểm B2;1;3   nên phương trình mặt phẳng là: 4x2+5y13z+3=04x+5y3z22=0

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Ta có: 2a=4;6;63b=0;6;32c=6;2;10u=2a+3b2c=2;2;7

Lời giải

Đáp án D

Ta có ΔSAB=ΔSAD  cgc  , suy ra SB=SD

Lại có SBD^=60o , suy ra ΔSBD   đều cạnh SB=SD=BD=a2

Tam giác vuông SAB, có SA=SB2AB2=a

Gọi E là trung điểm AD, suy ra OE//AB  và AEOE

Do đó dAB,SO=dAB,SOE=dA,SOE

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông với đáy, góc SBD=60 độ . Tính khoảng cách d giữa hai đường thẳng AB và SO. (ảnh 1)

Kẻ AKSE

Khi đó dA,SOE=AK=SA.AESA2+AE2=a55.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP