Câu hỏi:

23/05/2022 241 Lưu

Cho số phức z  thỏa mãn \[z - 4 = \left( {1 + i} \right)\left| z \right| - \left( {4 + 3z} \right)i\]. Môđun của z bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Giả sử \[z = a + bi\left( {a,b \in \mathbb{R}} \right)\]

Ta có \[z - 4 = \left( {1 + i} \right)\left| z \right| - \left( {4 + 3z} \right)i \Leftrightarrow \left( {1 + 3i} \right)z = \left| z \right| + 4 + \left( {\left| z \right| - 4} \right)i\]

\[ \Rightarrow \left| {\left( {1 + 3i} \right)z} \right| = \left| {\left| z \right| + 4 + \left( {\left| z \right| - 4} \right)i} \right| \Leftrightarrow \sqrt {10} \left| z \right| = \sqrt {{{\left( {\left| z \right| + 4} \right)}^2} + {{\left( {\left| z \right| - 4} \right)}^2}} \]

\[ \Leftrightarrow 10{\left| z \right|^2} = 2{\left| z \right|^2} + 32 \Leftrightarrow \left| z \right| = 2\]. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Ta có \[{\log _2}\left( {8a} \right) = {\log _2}8 + {\log _2}a = 3 + {\log _2}a\]. Chọn A.

Câu 2

Lời giải

Đáp án A

Ta có \[\int {\left( {4x + \sin x} \right)dx}  = 2{x^2} - \cos x + C\]. Chọn A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP