Cho hai số thực \[a,b > 1\] sao cho tồn tại số thực \[x\left( {x > 0,x \ne 1} \right)\] thỏa mãn \[{a^{{{\log }_b}}}x = {b^{{{\log }_a}{x^2}}}\]. Khi biểu thức \[P = {\ln ^2}a + {\ln ^2}b - \ln \left( {ab} \right)\] đạt giá trị nhỏ nhất thì \[a + b\] thuộc khoảng nào dưới đây?
Quảng cáo
Trả lời:
Đáp án B
Từ \[{a^{{{\log }_b}x}} = {b^{{{\log }_a}{x^2}}} \Rightarrow {\log _a}\left( {{a^{{{\log }_b}x}}} \right) = {\log _a}\left( {{b^{{{\log }_a}{x^2}}}} \right)\]
\[ \Rightarrow {\log _b}x = {\log _a}{x^2}.{\log _a}b = 2{\log _a}x.{\log _a}b \Rightarrow \frac{{\ln x}}{{\ln b}} = 2.\frac{{\ln x}}{{\ln a}}.\frac{{\ln b}}{{\ln a}} \Rightarrow {\left( {\ln a} \right)^2} = 2{\left( {\ln b} \right)^2}\]
Mà \[a,b > 1 \Rightarrow \ln a > 0;\ln b > 0 \Rightarrow \ln a = \sqrt 2 \ln b\]
\[ \Rightarrow P = {\ln ^2}a + {\ln ^2}b - \ln a - \ln b = 3{\ln ^2}b - \left( {1 + \sqrt 2 } \right)\ln b\]
Dấu “=” xảy ra Chọn B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Ta có \[{\log _2}\left( {8a} \right) = {\log _2}8 + {\log _2}a = 3 + {\log _2}a\]. Chọn A.
Lời giải
Đáp án A
Ta có \[\int {\left( {4x + \sin x} \right)dx} = 2{x^2} - \cos x + C\]. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.