Câu hỏi:
23/05/2022 158Gọi S là tập hợp tất cả các số tự nhiên có dạng \[\overline {abcdef} \], trong đó \[a,b,c,d,e,f\] đôi một khác nhau và thuộc tập \[T = \left\{ {0;1;2;3;4;5;6} \right\}\]. Chọn ngẫu nhiên một số từ S. Tính xác suất để số được chọn thỏa mãn \[a + b = c + d = e + f\]
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Có tất cả \[6.6.5.4.3.2 = 4320\] số tự nhiên có 6 chữ số đôi một khác nhau được lập từ T.
Số lập được thỏa mãn \[a + b = c + d = e + f\], ta xét các trường hợp sau:
+ TH1. Xét các cặp \[\left\{ {0;6} \right\},\left\{ {1;5} \right\},\left\{ {2;4} \right\}\]
Nếu \[\left\{ {a;b} \right\} = \left\{ {0;6} \right\}\] thì có 1 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.
Nếu \[\left\{ {a;b} \right\} = \left\{ {1;5} \right\}\] thì có 2 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.
Nếu \[\left\{ {a;b} \right\} = \left\{ {2;4} \right\}\] thì có 2 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.
Nên có tất cả \[1.8 + 2.8 + 2.8 = 40\] số thỏa mãn.
+ TH2. Xét các cặp \[\left\{ {0;5} \right\},\left\{ {1;4} \right\},\left\{ {2;3} \right\}\] tương tự TH1 có 40 số thỏa mãn.
+ TH3. Xét các cặp \[\left\{ {1;6} \right\},\left\{ {2;5} \right\},\left\{ {3;4} \right\}\]
Nếu \[\left\{ {a;b} \right\} = \left\{ {1;6} \right\}\] thì có 2 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.
Nếu \[\left\{ {a;b} \right\} = \left\{ {2;5} \right\}\] thì có 2 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.
Nếu \[\left\{ {a;b} \right\} = \left\{ {3;5} \right\}\] thì có 2 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.
Nên có tất cả \[2.8 + 2.8 + 2.8 = 48\] số thỏa mãn.
Vậy xác suất cần tìm là \[\frac{{40 + 40 + 48}}{{4320}} = \frac{4}{{135}}\]. Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = 4x + \sin x\] là
Câu 2:
Với a là số thực dương tùy ý, \[{\log _2}\left( {8a} \right)\] bằng
Câu 3:
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):2x - 3y + 6z - 5 = 0\] và điểm \[A\left( {2; - 3;1} \right)\]. Viết phương trình mặt phẳng \[\left( Q \right)\] đi qua A và song song với mặt phẳng \[\left( P \right)\]
Câu 4:
Biết hàm số \[f\left( x \right) = {x^3} + a{x^2} + bx + c\] đạt cực đại tại điểm \[x = - 3,f\left( { - 3} \right) = 28\] và đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 1. Tính \[S = {a^2} + {b^2} - {c^2}\]
Câu 5:
Cho hàm số . Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng \[\left( { - \infty ; + \infty } \right)\]?
Câu 6:
Cho hai số phức \[{z_1} = 3 - 2i,{z_2} = 1 + i\]. Trên mặt phẳng tọa độ Oxy, điểm biểu diễn số phức \[{z_1}{z_2}\] có tọa độ là
Câu 7:
Trong không gian Oxyz, cho mặt phẳng . Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
44 bài tập Đạo hàm và khảo sát hàm số có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 23)
về câu hỏi!