Câu hỏi:

23/05/2022 193

Gọi S là tập hợp tất cả các số tự nhiên có dạng \[\overline {abcdef} \], trong đó \[a,b,c,d,e,f\] đôi một khác nhau và thuộc tập \[T = \left\{ {0;1;2;3;4;5;6} \right\}\]. Chọn ngẫu nhiên một số từ S. Tính xác suất để số được chọn thỏa mãn \[a + b = c + d = e + f\]

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Có tất cả \[6.6.5.4.3.2 = 4320\] số tự nhiên có 6 chữ số đôi một khác nhau được lập từ T.

Số lập được thỏa mãn \[a + b = c + d = e + f\], ta xét các trường hợp sau:

+ TH1. Xét các cặp \[\left\{ {0;6} \right\},\left\{ {1;5} \right\},\left\{ {2;4} \right\}\]

Nếu \[\left\{ {a;b} \right\} = \left\{ {0;6} \right\}\] thì có 1 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.

Nếu \[\left\{ {a;b} \right\} = \left\{ {1;5} \right\}\] thì có 2 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.

Nếu \[\left\{ {a;b} \right\} = \left\{ {2;4} \right\}\] thì có 2 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.

Nên có tất cả \[1.8 + 2.8 + 2.8 = 40\] số thỏa mãn.

+ TH2. Xét các cặp \[\left\{ {0;5} \right\},\left\{ {1;4} \right\},\left\{ {2;3} \right\}\] tương tự TH1 có 40 số thỏa mãn.

+ TH3. Xét các cặp \[\left\{ {1;6} \right\},\left\{ {2;5} \right\},\left\{ {3;4} \right\}\]

Nếu \[\left\{ {a;b} \right\} = \left\{ {1;6} \right\}\] thì có 2 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.

Nếu \[\left\{ {a;b} \right\} = \left\{ {2;5} \right\}\] thì có 2 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.

Nếu \[\left\{ {a;b} \right\} = \left\{ {3;5} \right\}\] thì có 2 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.

Nên có tất cả \[2.8 + 2.8 + 2.8 = 48\] số thỏa mãn.

Vậy xác suất cần tìm là \[\frac{{40 + 40 + 48}}{{4320}} = \frac{4}{{135}}\]. Chọn A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = 4x + \sin x\]

Xem đáp án » 23/05/2022 6,400

Câu 2:

Với a là số thực dương tùy ý, \[{\log _2}\left( {8a} \right)\] bằng

Xem đáp án » 23/05/2022 6,355

Câu 3:

Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):2x - 3y + 6z - 5 = 0\] và điểm \[A\left( {2; - 3;1} \right)\]. Viết phương trình mặt phẳng \[\left( Q \right)\] đi qua A và song song với mặt phẳng \[\left( P \right)\]

Xem đáp án » 23/05/2022 3,191

Câu 4:

Biết hàm số \[f\left( x \right) = {x^3} + a{x^2} + bx + c\] đạt cực đại tại điểm \[x =  - 3,f\left( { - 3} \right) = 28\] và đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 1. Tính \[S = {a^2} + {b^2} - {c^2}\]

Xem đáp án » 23/05/2022 2,272

Câu 5:

Cho hàm số y=13x3+mx2+4m5x. Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng \[\left( { - \infty ; + \infty } \right)\]?

Xem đáp án » 23/05/2022 1,383

Câu 6:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cạnh \[AC = 2a\sqrt 2 \]. Hình chiếu vuông góc của S trên mặt phẳng đáy trùng với trung điểm của cạnh AB. Thể tích khối chóp S.ABC bằng \[\frac{{2{a^3}}}{3}\]. Khoảng cách từ điểm A đến mặt phẳng \[\left( {SBC} \right)\] bằng

Xem đáp án » 23/05/2022 1,106

Câu 7:

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có bảng biến thiên như sau:

Cho hàm số y=f(x)  liên tục trên R  và có bảng biến thiên như sau:   (ảnh 1)

Xác định số nghiệm của phương trình \[\left| {f\left( {{x^3} - 3{x^2}} \right)} \right| = \frac{3}{2}\], biết \[f\left( { - 4} \right) = 0\]

Xem đáp án » 23/05/2022 1,057
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua