Câu hỏi:

23/05/2022 274

Có tất cả bao nhiêu giá trị nguyên của tham số m để có đúng hai số phức z thỏa mãn \[\left| {z - 2m + 1 - i} \right| = 10\]z1+i=z¯2+3i?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Giả sử \[z = x + yi\left( {x,y \in \mathbb{R}} \right)\]

Ta có \[\left| {z - 2m + 1 - i} \right| = 10\]

\[ \Leftrightarrow \left| {x - 2m + 1 + \left( {y - 1} \right)i} \right| = 10 \Leftrightarrow {\left( {x - 2m + 1} \right)^2} + {\left( {y - 1} \right)^2} = 100\]

Tập hợp các điểm biểu diễn số phưc z là đường tròn \[\left( C \right)\] có tâm \[I\left( {2m - 1;1} \right)\] và bán kính \[R = 10\].

Lại có z1+i=z¯2+3ix1+y+1i=xyi2+3i

\[ \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {\left( {x - 2} \right)^2} + {\left( {3 - y} \right)^2} \Leftrightarrow 2 - 2x + 2y = 13 - 4x - 6y \Leftrightarrow 2x + 8y - 11 = 0\]

Tập hợp các điểm biểu diễn số phức z là đường thẳng \[\Delta :2x + 8y - 11 = 0\]

Để có đúng hai số phức z thỏa mãn bài toán thì \[\Delta \] phải cắt \[\left( C \right)\] tại 2 điểm phân biệt

dI;Δ<R22m1+81122+82<104m5<2017

2017<4m5<201752074<m<5+2074

\[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 19; - 18; - 17;...;0;1;2;...;21} \right\}\]. Chọn B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = 4x + \sin x\]

Xem đáp án » 23/05/2022 6,401

Câu 2:

Với a là số thực dương tùy ý, \[{\log _2}\left( {8a} \right)\] bằng

Xem đáp án » 23/05/2022 6,357

Câu 3:

Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):2x - 3y + 6z - 5 = 0\] và điểm \[A\left( {2; - 3;1} \right)\]. Viết phương trình mặt phẳng \[\left( Q \right)\] đi qua A và song song với mặt phẳng \[\left( P \right)\]

Xem đáp án » 23/05/2022 3,192

Câu 4:

Biết hàm số \[f\left( x \right) = {x^3} + a{x^2} + bx + c\] đạt cực đại tại điểm \[x =  - 3,f\left( { - 3} \right) = 28\] và đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 1. Tính \[S = {a^2} + {b^2} - {c^2}\]

Xem đáp án » 23/05/2022 2,273

Câu 5:

Cho hàm số y=13x3+mx2+4m5x. Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng \[\left( { - \infty ; + \infty } \right)\]?

Xem đáp án » 23/05/2022 1,384

Câu 6:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cạnh \[AC = 2a\sqrt 2 \]. Hình chiếu vuông góc của S trên mặt phẳng đáy trùng với trung điểm của cạnh AB. Thể tích khối chóp S.ABC bằng \[\frac{{2{a^3}}}{3}\]. Khoảng cách từ điểm A đến mặt phẳng \[\left( {SBC} \right)\] bằng

Xem đáp án » 23/05/2022 1,106

Câu 7:

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có bảng biến thiên như sau:

Cho hàm số y=f(x)  liên tục trên R  và có bảng biến thiên như sau:   (ảnh 1)

Xác định số nghiệm của phương trình \[\left| {f\left( {{x^3} - 3{x^2}} \right)} \right| = \frac{3}{2}\], biết \[f\left( { - 4} \right) = 0\]

Xem đáp án » 23/05/2022 1,057
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua