Câu hỏi:

24/05/2022 6,670 Lưu

Cho hàm số \[y = f\left( x \right)\] có đạo hàm, nhận giá trị dương trên \(\left( {0; + \infty } \right)\) và thỏa mãn \(2f'\left( {{x^2}} \right) = 9{\rm{x}}\sqrt {f\left( {{x^2}} \right)} \) với mọi \(x \in \left( {0; + \infty } \right)\). Biết \(f\left( {\frac{2}{3}} \right) = \frac{2}{3}\), tính giá trị \(f\left( {\frac{1}{3}} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Ta có \(2f'\left( {{x^2}} \right) = 9{\rm{x}}\sqrt {f\left( {{x^2}} \right)} \)

\( \Leftrightarrow \frac{{2{\rm{x}}f'\left( x \right)}}{{2\sqrt {f\left( {{x^2}} \right)} }} = \frac{9}{2}{x^2} \Leftrightarrow \frac{{{{\left[ {f\left( {{x^2}} \right)} \right]}^\prime }}}{{2\sqrt {f\left( {{x^2}} \right)} }} = \frac{9}{2}{x^2} \Leftrightarrow {\left[ {\sqrt {f\left( {{x^2}} \right)} } \right]^\prime } = \frac{9}{2}{x^2}\)

Do đó fx2=92x2dx=32x3+C

f23=2323=32.2323+CC=0

Suy ra \(f\left( {{x^2}} \right) = \frac{9}{4}{x^6} \Leftrightarrow f\left( x \right) = \frac{9}{4}{x^3} \Rightarrow f\left( {\frac{1}{3}} \right) = \frac{9}{4}.{\left( {\frac{1}{3}} \right)^3} = \frac{1}{{12}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Xét Dx;y;zAD=BCx1=5y=2z3=6D4;2;9

Câu 2

Lời giải

Đáp án A

Xét Mx;y;zAM=x;y1;z+2AB=3;2;3AM=3ABx=3.3y1=3.2z+2=3.3M9;5;7

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP