Câu hỏi:

26/05/2022 418

Cho đồ thị hàm số y = f'(x) như hình vẽ, biết f"3=23. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số gx=3f32xmx2+6m12x có đúng bốn điểm cực trị?

Cho đồ thị hàm số y = f'(x) như hình vẽ, biết f''(3) = 2/3. Hỏi có tất cả (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D.

Cho đồ thị hàm số y = f'(x) như hình vẽ, biết f''(3) = 2/3. Hỏi có tất cả (ảnh 2)

Xét hàm số gx=3f32xmx2+6m12x.

Ta có: g'x=6f'32x2mx+6m12=6f'32x+m3xm+2.

    g'x=0f'32x+m3xm+2=0 *

Đặt t=32xx=3t2, suy ra (*) có dạng:

     f't+m3t6m+2=0f't=m6t+m22.

Số nghiệm bội lẻ của phương trình g'(x) = 0 bằng với số nghiệm bội lẻ của phương trình f't=m6t+m22, tương đương với số giao điểm không tiếp xúc của hai đồ thị y = f'(t) và đường thẳng y=m6t+m22=m2t3+12. d

Đường thẳng d luôn đi qua A(-3; -2)

Gọi d1 là đường thẳng đi qua A và tiếp xúc với đồ thị hàm số y = f'(t) tại điểm (3; 2) như hình vẽ.

Suy ra: d1:y=23t khi đó giá trị tham số m=m1 thỏa mãn m16=23m1=4.

Gọi d2 là đường thẳng đi qua A và tiếp xúc với đồ thị hàm số y = f'(t) tại điểm (1; -2) như hình vẽ.

Suy ra: d2:y=2 khi đó giá trị tham số m=m2 thỏa mãn 2=m2.16+m222m2=0.

Để hàm số g(x) có bốn điểm cực trị thì phương trình f't=m6t+m22 có bốn nghiệm bội lẻ, tương đương với đồ thị y = f'(t) và đường thẳng d có bốn giao điểm xuyên qua.

Do đó m2=0<m<m1=4m1;2;3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn D.

Ta có y=logxy'=1xln10.

Câu 2

Lời giải

Chọn D.

Điều kiện của bất phương trình 2x+4>0x>2.

Ta có log22x+4<32x+4<232x+4<8x<2.

Kết hợp với điều kiện ta có tập nghiệm của bất phương trình là (-2; 2)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP