Câu hỏi:
13/07/2024 5,007Cho hàm số bậc hai y = f(x) = ax2 + bx + c có f(0) = 1, f(1) = 2, f(2) = 5.
a) Hãy xác định giá trị của các hệ số a, b, c.
b) Xác định tập giá trị và khoảng biến thiên của hàm số.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
f(0) = a.02 + b.0 + c = 1 ⇔ c = 1.
f(1) = a.12 + b.1 + c = 2 ⇔ a + b + c = 2.
f(2) = a.22 + b.2 + c = 5 ⇔ 4a + 2b + c = 5.
Khi đó, ta có hệ phương trình:
Vậy a = 1, b = 0 và c = 1.
b) Với a = 1, b = 0 và c = 1 thì ta có hàm số: y = x2 + 1.
Xét hàm số bậc hai: y = x2 + 1, có:
Đỉnh S có tọa độ xs = , ys = 02 + 1 = 1. Hay S(0; 1).
Vì hàm số bậc hai có a = 1 > 0 nên ta có bảng biến thiên sau:
Dựa vào bảng biến thiên ta có:
Hàm số có giá trị nhỏ nhất bằng 1 khi x = 0. Do đó tập giá trị của hàm số là [1; +∞).
Hàm số nghịch biến trên khoảng (-∞;0) và đồng biến trên khoảng (0; +∞).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = 2x2 + x + m. Hãy xác định giá trị của m để hàm số đạt giá trị nhỏ nhất bằng 5.
Câu 3:
Vẽ đồ thị các hàm số sau:
a) y = 2x2 + 4x – 1;
b) y = -x2 + 2x + 3;
c) y = -3x2 + 6x;
d) y = 2x2 – 5.
Câu 4:
Lập bảng biến thiên của hàm số y = x2 + 2x + 3. Hàm số này có giá trị lớn nhất hay nhỏ nhất? Tìm giá trị đó.
Câu 5:
Hãy xác định đúng đồ thị của mỗi hàm số sau trên Hình 12.
(P1): y = - 2x2 – 4x + 2;
(P2): y = 3x2 – 6x + 5;
(P3): y = 4x2 – 8x + 7;
(P4): y = -3x2 – 6x + 1.
Câu 6:
Hàm số nào sau đây là hàm số bậc hai?
a) y = 9x2 + 5x + 4;
b) y = 3x3 + 2x + 1;
c) y = -4(x + 2)3 + 2(2x3 + 1) + 5;
d) y = 5x2 + + 2.
về câu hỏi!