Câu hỏi:
13/07/2024 4,083Vẽ đồ thị các hàm số sau:
a) y = 2x2 + 4x – 1;
b) y = -x2 + 2x + 3;
c) y = -3x2 + 6x;
d) y = 2x2 – 5.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = 2x2 + 4x – 1 là một parabol (P):
- Có đỉnh S với hoành độ xS = -1, tung độ yS = -3;
- Có trục đối xứng là đường thẳng x = -1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay lên trên vì a > 0;
- Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua điểm có tọa độ (0; -1).
Ngoài ra, phương trình 2x2 + 4x – 1 = 0 có hai nghiệm phân biệt x1 = và x2 = nên đồ thị hàm số cắt trục hoành tại hai điểm có tọa độ và .
Ta được đồ thị hàm số như sau:
b) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = -x2 + 2x + 3 là một parabol (P):
- Có đỉnh S với hoành độ xS = 1, tung độ yS = 4;
- Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay xuống dưới vì a < 0;
- Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).
Ngoài ra, phương trình -x2 + 2x + 3 = 0 có hai nghiệm phân biệt x1 = 3 và x2 = -1 nên đồ thị hàm số cắt trục hoành tại hai điểm có tọa độ (3; 0) và (-1; 0).
Ta được đồ thị hàm số như sau:
c) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = -3x2 + 6x là một parabol (P):
- Có đỉnh S với hoành độ xS = 1, tung độ yS = 3;
- Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay xuống dưới vì a < 0;
- Cắt trục tung tại điểm có tung độ bằng 0, tức là đồ thị đi qua điểm có tọa độ (0; 0).
Ngoài ra, phương trình -3x2 + 6x = 0 có hai nghiệm phân biệt x1 = 0 và x2 = 2 nên đồ thị hàm số cắt trục hoành tại hai điểm có tọa độ (0; 0) và (2; 0).
Ta được đồ thị hàm số như sau:
d) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = 2x2 – 5 là một parabol (P):
- Có đỉnh S với hoành độ xS = 0, tung độ yS = -5;
- Có trục đối xứng là đường thẳng x = 0 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay lên trên vì a > 0;
- Cắt trục tung tại điểm có tung độ bằng -5, tức là đồ thị đi qua điểm có tọa độ (0; -5).
Ngoài ra, phương trình 2x2 – 5 = 0 có hai nghiệm phân biệt x1 = và x2 = nên đồ thị hàm số cắt trục hoành tại hai điểm có tọa độ (; 0) và (; 0).
Ta được đồ thị hàm số như sau:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = 2x2 + x + m. Hãy xác định giá trị của m để hàm số đạt giá trị nhỏ nhất bằng 5.
Câu 3:
Cho hàm số bậc hai y = f(x) = ax2 + bx + c có f(0) = 1, f(1) = 2, f(2) = 5.
a) Hãy xác định giá trị của các hệ số a, b, c.
b) Xác định tập giá trị và khoảng biến thiên của hàm số.
Câu 4:
Lập bảng biến thiên của hàm số y = x2 + 2x + 3. Hàm số này có giá trị lớn nhất hay nhỏ nhất? Tìm giá trị đó.
Câu 5:
Hãy xác định đúng đồ thị của mỗi hàm số sau trên Hình 12.
(P1): y = - 2x2 – 4x + 2;
(P2): y = 3x2 – 6x + 5;
(P3): y = 4x2 – 8x + 7;
(P4): y = -3x2 – 6x + 1.
Câu 6:
Hàm số nào sau đây là hàm số bậc hai?
a) y = 9x2 + 5x + 4;
b) y = 3x3 + 2x + 1;
c) y = -4(x + 2)3 + 2(2x3 + 1) + 5;
d) y = 5x2 + + 2.
về câu hỏi!