Câu hỏi:
13/07/2024 5,576
Hãy xác định đúng đồ thị của mỗi hàm số sau trên Hình 12.
(P1): y = - 2x2 – 4x + 2;
(P2): y = 3x2 – 6x + 5;
(P3): y = 4x2 – 8x + 7;
(P4): y = -3x2 – 6x + 1.

Hãy xác định đúng đồ thị của mỗi hàm số sau trên Hình 12.
(P1): y = - 2x2 – 4x + 2;
(P2): y = 3x2 – 6x + 5;
(P3): y = 4x2 – 8x + 7;
(P4): y = -3x2 – 6x + 1.
Câu hỏi trong đề: Bài tập Hàm số bậc hai có đáp án !!
Quảng cáo
Trả lời:
+) (P1): y = - 2x2 – 4x + 2
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = - 2x2 – 4x + 2 là một parabol (P1):
- Có đỉnh S với hoành độ xS = -1, tung độ yS = 4;
- Có trục đối xứng là đường thẳng x = -1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay xuống dưới vì a < 0;
- Cắt trục tung tại điểm có tung độ bằng 2, tức là đồ thị đi qua điểm có tọa độ (0; 2).
Quan sát trên hình vẽ, ta thấy đồ thị tương thích với hàm số (P1) là đường cong màu xanh lá cây.
+) (P2): y = 3x2 – 6x + 5;
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = 3x2 – 6x + 5 là một parabol (P2):
- Có đỉnh S với hoành độ xS = 1, tung độ yS = 2;
- Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay lên trên vì a > 0;
- Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).
Quan sát trên hình vẽ, ta thấy đồ thị tương thích với hàm số (P2) là đường cong màu xanh dương.
+) (P3): y = 4x2 – 8x + 7:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = 4x2 – 8x + 7 là một parabol (P3):
- Có đỉnh S với hoành độ xS = 1, tung độ yS = 3;
- Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay lên trên vì a > 0;
- Cắt trục tung tại điểm có tung độ bằng 7, tức là đồ thị đi qua điểm có tọa độ (0; 7).
Quan sát trên hình vẽ, ta thấy đồ thị tương thích với hàm số (P3) là đường cong màu đỏ.
+) (P4): y = -3x2 – 6x + 1:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = -3x2 – 6x – 1 là một parabol (P4):
- Có đỉnh S với hoành độ xS = -1, tung độ yS = 2;
- Có trục đối xứng là đường thẳng x = -1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
- Bề lõm quay xuống dưới vì a < 0;
- Cắt trục tung tại điểm có tung độ bằng 1, tức là đồ thị đi qua điểm có tọa độ (0; -1).
Quan sát trên hình vẽ, ta thấy đồ thị tương thích với hàm số (P4) là đường cong màu cam.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hàm số y = 2x2 + x + m có a = 2, b = 1 và c = m.
Điểm đỉnh S có tọa độ xS = , yS = .
Hàm số có a = 2 > 0 nên giá trị nhỏ nhất của hàm số là m – .
Mà giá trị nhỏ nhất bằng 5 nên m – = 5 ⇔ m = .
Vậy với m = thì giá trị nhỏ nhất của hàm số là 5.
Lời giải
Ta có:
f(0) = a.02 + b.0 + c = 1 ⇔ c = 1.
f(1) = a.12 + b.1 + c = 2 ⇔ a + b + c = 2.
f(2) = a.22 + b.2 + c = 5 ⇔ 4a + 2b + c = 5.
Khi đó, ta có hệ phương trình:
Vậy a = 1, b = 0 và c = 1.
b) Với a = 1, b = 0 và c = 1 thì ta có hàm số: y = x2 + 1.
Xét hàm số bậc hai: y = x2 + 1, có:
Đỉnh S có tọa độ xs = , ys = 02 + 1 = 1. Hay S(0; 1).
Vì hàm số bậc hai có a = 1 > 0 nên ta có bảng biến thiên sau:
Dựa vào bảng biến thiên ta có:
Hàm số có giá trị nhỏ nhất bằng 1 khi x = 0. Do đó tập giá trị của hàm số là [1; +∞).
Hàm số nghịch biến trên khoảng (-∞;0) và đồng biến trên khoảng (0; +∞).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.