Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Dựa vào hình vẽ ta thấy:
Đồ thị hàm số có dạng parabol nên hàm số có dạng y = ax2 + bx + c với a, b, c ∈ và a ≠ 0. Hơn nữa đồ thị hàm số có bề lõm hướng lên trên nên a > 0.
Đồ thị hàm số cắt trục tung tại điểm tọa độ (0; -4) nên ta có: 4 = a.02 + b.0 + c ⇔ c = 4.
Điểm đỉnh S của đồ thị hàm số có tọa độ xS = 1,5 và yS = -6.25
Đồ thị hàm số cắt trục hoành tại hai điểm (-1; 0) và (4; 0) nên thay x = -1 và y = 0 vào hàm số ta được: 0 = a(-1)2 + b(-1) + c
⇔ 0 = a – b + c
Mà b = – 3a và c = 4 nên ta có: a + 3a + 4 = 0 ⇔ a = 1 ⇒ b = -3.
Vậy hàm số cần tìm là y = x2 – 3x + 4.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = 2x2 + x + m. Hãy xác định giá trị của m để hàm số đạt giá trị nhỏ nhất bằng 5.
Câu 2:
Cho hàm số bậc hai y = f(x) = ax2 + bx + c có f(0) = 1, f(1) = 2, f(2) = 5.
a) Hãy xác định giá trị của các hệ số a, b, c.
b) Xác định tập giá trị và khoảng biến thiên của hàm số.
Câu 3:
Vẽ đồ thị các hàm số sau:
a) y = 2x2 + 4x – 1;
b) y = -x2 + 2x + 3;
c) y = -3x2 + 6x;
d) y = 2x2 – 5.
Câu 4:
Lập bảng biến thiên của hàm số y = x2 + 2x + 3. Hàm số này có giá trị lớn nhất hay nhỏ nhất? Tìm giá trị đó.
Câu 5:
Hãy xác định đúng đồ thị của mỗi hàm số sau trên Hình 12.
(P1): y = - 2x2 – 4x + 2;
(P2): y = 3x2 – 6x + 5;
(P3): y = 4x2 – 8x + 7;
(P4): y = -3x2 – 6x + 1.
Câu 6:
Hàm số nào sau đây là hàm số bậc hai?
a) y = 9x2 + 5x + 4;
b) y = 3x3 + 2x + 1;
c) y = -4(x + 2)3 + 2(2x3 + 1) + 5;
d) y = 5x2 + + 2.
về câu hỏi!