Câu hỏi:

08/06/2022 327

Cho hàm số y=f(x) có bảng biến thiên như sau
Cho hàm số y=f(x)  có bảng biến thiên như sau (ảnh 1)

Tập hợp tất cả các giá trị thực của tham số m để phương trình f(x)+m=0  có hai nghiệm phân biệt là

Đáp án chính xác

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Ta có: f(x)+m=0m=f(x) .

Phương trình đã cho có hai nghiệm phân biệt  đường thẳng y=-m cắt đồ thị hàm số y=f(x)  tại hai điểm phân biệt.

Quan sát bảng biến thiên ta thấy, với 2<m1  thì đường thẳng y=-m cắt đồ thị hàm số y=f(x) tại hai điểm phân biệt hay 1m<2  thì phương trình đã cho có hai nghiệm phân biệt.

Vậy tập hợp các giá trị cần tìm là [1;2) .

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình đường tiệm cận đứng của đồ thị hàm số y=2x1x2  là:

Xem đáp án » 07/06/2022 9,209

Câu 2:

Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [10;10]   để hàm số y=x33x2+3mx+2019  nghịch biến trên khoảng (1;2)?

Xem đáp án » 08/06/2022 7,474

Câu 3:

Có tất cả bao nhiêu giá trị khác nhau của tham số m để đồ thị hàm số y=x1x2+mx+4  có 2 đường tiệm cận?

Xem đáp án » 07/06/2022 6,624

Câu 4:

Cho hàm số y=f(x) có đồ thị như hình dưới đây. Diện tích của hình phẳng giới hạn bởi đồ thị hàm số y=f(x) và trục Ox là:

Cho hàm số y=f(x)  có đồ thị như hình dưới đây. Diện tích của hình phẳng giới hạn bởi đồ thị hàm số y=f(x)  và trục Ox là:  (ảnh 1)

Xem đáp án » 07/06/2022 3,470

Câu 5:

Trong không gian Oxyz , cho mặt phẳng (P): x-2y-2z-3=0 và mặt phẳng (Q): x-2y-2z+6=0 . Gọi (S) là một mặt cầu tiếp xúc với cả hai mặt phẳng. Bán kính của (S) bằng

Xem đáp án » 08/06/2022 2,592

Câu 6:

Trong không gian Oxyz, cho hai điểm A(2;0;2) và B(0;4;0) . Mặt cầu nhận đoạn thẳng AB làm đường kính có phương trình là

Xem đáp án » 08/06/2022 2,041

Câu 7:

Trong không gian Oxyz, phương trình nào dưới đây là phương trình mặt phẳng vuông góc với trục Oz?

Xem đáp án » 07/06/2022 1,173
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua