Câu hỏi:

08/06/2022 167

Bác Bính có một tấm thép mỏng hình tròn tâm O bán kính 4dm. Bác định cắt ra một hình quạt tròn tâm O, quấn rồi hàn ghép hai mép của hình quạt tròn lại để tạo thành một đồ vật dạng mặt nón tròn xoay (tham khảo hình vẽ). Dung tích lớn nhất có thể của đồ vật mà bác Bính tạo ra bằng bao nhiêu? (Bỏ qua phần mối hàn và độ dày của tấm thép)
Bác Bính có một tấm thép mỏng hình tròn tâm   bán kính  . Bác định cắt ra một hình quạt tròn tâm  , quấn rồi hàn ghép hai mép của hình quạt tròn lại để tạo thành một đồ vật dạng mặt nón tròn xoay (tham khảo hình vẽ). Dung tích lớn nhất có thể của đồ vật mà bác Bính tạo ra bằng bao nhiêu? (Bỏ qua phần mối hàn và độ dày của tấm thép) (ảnh 1)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Bác Bính có một tấm thép mỏng hình tròn tâm   bán kính  . Bác định cắt ra một hình quạt tròn tâm  , quấn rồi hàn ghép hai mép của hình quạt tròn lại để tạo thành một đồ vật dạng mặt nón tròn xoay (tham khảo hình vẽ). Dung tích lớn nhất có thể của đồ vật mà bác Bính tạo ra bằng bao nhiêu? (Bỏ qua phần mối hàn và độ dày của tấm thép) (ảnh 2)

Gọi bán kính đáy hình nón là r.

Ta có: Vn=13πr2h=13πr216r2  với 0<r<4 .

Xét hàm f(r)=r216r2  trên (0;4)  có:

f'(r)=2r16r2+r.r16r2=323r316r2=0[r=463(0;4)r=463(0;4)r=0(0;4)

Bảng biến thiên:

Bác Bính có một tấm thép mỏng hình tròn tâm   bán kính  . Bác định cắt ra một hình quạt tròn tâm  , quấn rồi hàn ghép hai mép của hình quạt tròn lại để tạo thành một đồ vật dạng mặt nón tròn xoay (tham khảo hình vẽ). Dung tích lớn nhất có thể của đồ vật mà bác Bính tạo ra bằng bao nhiêu? (Bỏ qua phần mối hàn và độ dày của tấm thép) (ảnh 3)

Từ bảng biến thiên ta thấy, hàm số f(r) đạt GTLN khi .r=463

Vậy Vmax=13π(463)216(463)2=128π327(dm3) .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình đường tiệm cận đứng của đồ thị hàm số y=2x1x2  là:

Xem đáp án » 07/06/2022 8,871

Câu 2:

Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [10;10]   để hàm số y=x33x2+3mx+2019  nghịch biến trên khoảng (1;2)?

Xem đáp án » 08/06/2022 6,896

Câu 3:

Có tất cả bao nhiêu giá trị khác nhau của tham số m để đồ thị hàm số y=x1x2+mx+4  có 2 đường tiệm cận?

Xem đáp án » 07/06/2022 6,266

Câu 4:

Trong không gian Oxyz , cho mặt phẳng (P): x-2y-2z-3=0 và mặt phẳng (Q): x-2y-2z+6=0 . Gọi (S) là một mặt cầu tiếp xúc với cả hai mặt phẳng. Bán kính của (S) bằng

Xem đáp án » 08/06/2022 2,358

Câu 5:

Trong không gian Oxyz, cho hai điểm A(2;0;2) và B(0;4;0) . Mặt cầu nhận đoạn thẳng AB làm đường kính có phương trình là

Xem đáp án » 08/06/2022 1,821

Câu 6:

Cho hàm số y=f(x) có đồ thị như hình dưới đây. Diện tích của hình phẳng giới hạn bởi đồ thị hàm số y=f(x) và trục Ox là:

Cho hàm số y=f(x)  có đồ thị như hình dưới đây. Diện tích của hình phẳng giới hạn bởi đồ thị hàm số y=f(x)  và trục Ox là:  (ảnh 1)

Xem đáp án » 07/06/2022 1,820

Câu 7:

Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số f(x)=xx trên đoạn [0 ; 3]. Giá trị của biểu thức M+2m gần với số nào nhất trong các số dưới đây?

Xem đáp án » 07/06/2022 821

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store