Câu hỏi:

15/06/2022 3,961

Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu S1:x22+y+32+z12=4 S2:x32+y+12+z+12=1. Gọi M là điểm thay đổi, thuộc mặt cầu S2sao cho tồn tại ba mặt phẳng đi qua M, đôi một vuông góc với nhau và lần lượt cắt mặt cầu S1 theo ba đường tròn. Giá trị lớn nhất của tổng chu vi ba đường tròn đó là: 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu (S1) (ảnh 1)

Mặt cầu S1:x22+y+32+z12=4 có tâm I12;3;1, bán kính R1=2.

Mặt cầu S2:x32+y+12+z+12=1 có tâm I23;1;1, bán kính R2=1.

Ta có: I1I2=12+22+22=3=R1+R2.

S1,S2 tiếp xúc ngoài.

Gọi P,Q,R là 3 mặt phẳng đi qua M đôi một vuông góc với nhau và lần lượt cắt mặt cầu S1 theo ba đường tròn.

Gọi H1,H2,H3 theo thứ tự là hình chiếu vuông góc của I1 lên P,Q,R.

     r1,r2,r3 theo thứ tự là bán kính các đường tròn tâm H1,H2,H3.

Khi đó ta có I1H12+I1H22+I1H32=I1M2

4r12+4r22+4r32=I1M2


Tổng chu vi 3 đường tròn là:

T=2πr1+2πr2+2πr=2πr1+r2+r3

Áp dụng BĐT Bunhiacopxki ta có:

r1+r2+r3212+12+12r12+r22+r32

r1+r2+r3312I1M2

T2π312I1M22π312R12=2π3124=4π6.

Vậy Tmax=4π6. Dấu “=” xảy ra khi r1=r2=r3,I1M=2.

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn ngẫu nhiên mỗi tổ một bạn  Số phần tử của không gian mẫu là nΩ=C161.C161=256.

Gọi A là biến cố: “Xác suất để cả hai bạn được chọn đều đăng kí cùng tổ hợp dự thi tốt nghiệp”.

TH1: 2 bạn được chọn cùng đăng kí thi tổ hợp tự nhiên  C101.C71=70 cách.

TH2: 2 bạn được chọn cùng đăng kí thi tổ hợp xã hội  C61.C91=54 cách.

nA=70+54=124.

Vậy xác suất của biến cố A là PA=nAnΩ=124256=3164.

Chọn C.

Câu 2

Lời giải

log3x=13x=313=33.

Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP