Câu hỏi:

15/06/2022 328 Lưu

Cho hàm số f(x)=ax3+bx2+cx+d  với a,b,c,d  có đồ thị như hình vẽ bên dưới

Cho hàm số f(x)= ã^3+bx^2+cx+d  với a,b,c,d thuộc R  có đồ thị như hình vẽ bên dưới (ảnh 1)

Gọi  là tập hợp tất cả các giá trị nguyên thuộc đoạn [10;10]  của tham số  để bất phương trình f(1x2)+23x3x2+83f(m)  có nghiệm. Số phần tử của tập hợp  

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Điều kiện: 1x1

Khi đó trở thành tìm m để bất phương trình f(1x2)+23x3x2+83f(m)   có nghiệm x[1;1]

Xét hàm số g(x)=f(1x2)+23x3x2+83  trên [1;1] .

Bài toán trở thành tìm m để f(m)g(x)  có nghiệm x[1;1]f(m)min[1;1]g(x) .

Ta có g'(x)=x1x2.f'(1x2)+2x22x=x[f'(1x2)1x2+2x2]x=0 .

x[1;1]{01x21f'(1x2)>042x20f'(1x2)1x2+2x2<0 .

Ta có bảng biến thiên của hàm g(x)   trên [1;1]

Cho hàm số f(x)= ã^3+bx^2+cx+d  với a,b,c,d thuộc R  có đồ thị như hình vẽ bên dưới (ảnh 2)

Dựa vào bảng biến thiên ta có: f(m)min[1;1]g(x)=g(1)=4;  dựa vào đồ thị ta có [m>0m=3 .

Do {mm[10;10],  nên m{3;1;2;3;4;5;6;7;8;9;10} .

Vậy có 11 số nguyên  thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Đồ thị hàm số y=ax+bcx+d(adbc0)  có đường tiệm cận đứng là x=dc .

Đồ thị hàm số y=2x1x2  có đường TCĐ là x=2 .

Lời giải

Đáp án A

TXĐ: D=.  Ta có: y'=3x26x+3m  .

Để hàm số đã cho nghịch biến trên (1;2) thì y'0,x(1;2)  và bằng 0 tại hữu hạn điểm.

3x26x+3m0x(1;2)x22x+m0x(1;2)

(x1)2+m10x(1;2)1m(x1)2x(1;2)

Hàm số y=(x1)2  đồng biến trên (1;+)  nên cũng đồng biến trên (1;2).

(11)2<(x1)2<(21)20<(x1)2<1

1m(x1)2x(1;2)1m1m0

Lại có m[10;10]  mZ  nên m{10;9;;0} .

Vậy có 11 giá trị của m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP