Câu hỏi:

15/06/2022 343 Lưu

Cho phương trình(x23x+m)2+x28x+2m=0 . Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [20;20]  để phương trình đã cho có 4 nghiệm phân biệt?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

+ Đặt x23x+m=t  rồi biến đổi đưa về phương trình tích.

+ Từ đó sử dụng sự tương giao của hai đồ thị hàm số để biện luận số nghiệm của phương trình.

+ Phương trình f(x)=g(x)   có số nghiệm bằng số giao điểm của hai đồ thị hàm số y=f(x);y=g(x) .

Xét phương trình (x23x+m)2+x28x+2m=0(x23x+m)2+(x23x+m)5x+m=0

Đặt x23x+m=tm=t2x2+3x  ta có phương trình: 

t2+t5x+tx2+3x=0t2x2+2t2x=0(tx)(t+x+2)=0

[tx=0t+x+2=0[x24x+m=0x22x+2+m=0[m=x2+4xm=x2+2x2

Ta có đồ thị hàm số  y=x2+4x và y=x2+2x2  .

Cho phương trình  (x^2-3x+m)^2. Có bao nhiêu giá trị nguyên của tham số  m thuộc đoạn [-20;20]  để phương trình đã cho có 4 nghiệm phân biệt? (ảnh 1)

Từ đồ thị hàm số ta thấy để phương trình đã cho có 4 nghiệm phân biệt thì {m<1m5  .

 m[20;20];mZm{20;19;;6;4;3;2} nên có 18 giá trị của thỏa mãn

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Đồ thị hàm số y=ax+bcx+d(adbc0)  có đường tiệm cận đứng là x=dc .

Đồ thị hàm số y=2x1x2  có đường TCĐ là x=2 .

Lời giải

Đáp án A

TXĐ: D=.  Ta có: y'=3x26x+3m  .

Để hàm số đã cho nghịch biến trên (1;2) thì y'0,x(1;2)  và bằng 0 tại hữu hạn điểm.

3x26x+3m0x(1;2)x22x+m0x(1;2)

(x1)2+m10x(1;2)1m(x1)2x(1;2)

Hàm số y=(x1)2  đồng biến trên (1;+)  nên cũng đồng biến trên (1;2).

(11)2<(x1)2<(21)20<(x1)2<1

1m(x1)2x(1;2)1m1m0

Lại có m[10;10]  mZ  nên m{10;9;;0} .

Vậy có 11 giá trị của m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP